A Practical Guide to Protein and Peptide Purification for Microsequencing

Edited by

PAUL T. MATSUDAIRA
Whitehead Institute for Biomedical Research and
Department of Biology
Massachusetts Institute of Technology
Cambridge, Massachusetts
Contents

Contributors ix
Preface xi
Abbreviations xiii

Introduction
Paul Matsudaira

Introduction 3
Phenyl Isothiocyanate Degradation: The Edman Reaction 5
Identification of PTH-Amino Acids 7
Instrument Limitations 8
Chemical Limitations 10
Sample Loading Conditions 12

1. Strategies for Obtaining Partial Amino Acid Sequence Data from Small Quantities (<5 nmol) of Pure or Partially Purified Protein
Harry Charbonneau

Requirements for Protein Sequence Analysis 17
Purification Strategies 17
Limited Proteolysis 20
 Reduction and Alkylation 20
 S-Pyridylethylation 23
 Microscale Cysteine Modification 23
Complete Fragmentation 24
Internal Sequence from Proteins Separated by SDS-PAGE 27
Preferred Cleavage Techniques 29
 CNBr Digest 29
 Lysine Cleavage with Achromobacter Protease I 29
Contents

2. Enzymatic Digestion of Proteins and HPLC Peptide Isolation
Kathryn L. Stone, Mary B. LoPresti, J. Myron Crawford, Raymond DeAngelis, and Kenneth R. Williams

Sample Preparation for Enzymatic Digestion 33
 Preparation of Non-SDS Containing Samples 34
 Preparation of SDS Gel-Eluted Proteins 35
 Elution of PVDF Electroblotted Proteins 36
Trypsin and Chymotrypsin Digestion of Proteins 37
Endoproteinase Lys-C Digestion of Proteins 42
General HPLC Conditions used for Both Analytical and Narrowbore Columns 43

3. Purification of Proteins and Peptides by SDS–PAGE
Nancy LeGendre and Paul Matsudaira

Gel Electrophoresis 52
Electroblotting to PVDF Membranes 53
 Visualization of Proteins with Coomassie Blue 57
 Visualization of Proteins by Transillumination 57
 Visualization of Proteins with India Ink 58
 In Situ CNBr Cleavage of Blotted Proteins 59
Amino Acid Analysis of Electroblotted Proteins 61
Phosphoamino Acid Analysis of Electroblotted Proteins 63
Electroelution from SDS Gels 66

4. Internal Amino Acid Sequence Analysis of Proteins after in Situ Protease Digestion on Nitrocellulose
Ruedi Aebersold

Introduction 73
Gel Electrophoresis 74
Electroblotting 74
Protein Detection 76
In Situ Enzymatic Cleavage of Electroblotted Proteins 77
Reverse-Phase HPLC of the Cleavage Fragments 79
Peptide Sequence Analysis 81
Contents

Efficiency of the Procedure 82
Reproducibility of Peptide Maps 83
Detection of Problems and Troubleshooting 85

5. Characterization of Peptides by Fast Atom Bombardment Mass Spectrometry and High Performance Tandem Mass Spectrometry

Hubert A. Scoble

Introduction 91
Two-Sector Fast Atom Bombardment Mass Spectrometry 92
Tandem Mass Spectrometry 93
Sequence Specific Peptide Fragmentation 95
Practical Considerations 96
Applications 98
Conclusion 109

References 111

General Reference Books on Protein Microsequencing Methodologies 113
General Descriptions of Modern Approaches to Protein Microsequencing 113
General Overview of Automated Gas-Phase Sequencing 114
Manual Gas-Phase Sequencing Methods 114
Amino Acid Analysis 115
Chemical Modification Methods 116
Proteolytic and Chemical Cleavage Methods 116
HPLC Peptide Isolation 118
SDS-PAGE Electrophoresis/Electroblotting Methods 119
Recovery of Proteins from SDS Gels—Electroelution and Diffusion 121
Recovery of Proteins from SDS Gels—Electroblotting onto PVDF (Immobilon) Membranes and Treated Glass Fiber Filters 121
Electroblotting of Proteins from Isoelectric Focusing Gels 123
Elution of Blotted Proteins from Nitrocellulose and PVDF Membranes 124
Contents

Amino Acid Analysis of Electroblotted Samples 124
Internal Sequence from Electroblotted and Electroeluted Samples 125
Partial Fragmentation of Proteins in SDS-Gel Slices 126
Removal of SDS from Protein Samples 127
Microscale Transfer of Proteins to Volatile Buffers 127
Fast Atom Bombardment and Tandem Mass Spectrometry 127
Mass Spectrometric Identification of Peptide Sequences and Post-translational Modifications 129
N-Terminal Modifications in Vivo 130