Biological and Biochemical Applications of Electron Spin Resonance

D. J. E. INGRAM M.A., D.Phil. D.Sc., Hon.D.Sc., F.Inst.P. Professor of Physics, University of Keele

ADAM HILGER LTD

CONTENTS

.

INTRODUCTION I

2

3

4

A CARL A MARKENSIN

1.1	The potentialities of electron resonance in biological investigations	I
1.2	The basic principles of electron resonance	3
1.3	Main features of E.S.R. spectra —Integrated intensity—Line width—g values	8
1.4	Electronic splitting —Atoms or molecules with more than one unparted electron— Electronic splitting in organic molecules—Electronic splitting in transition group atoms	14
1.5	Hyperfine splittings and their origins —Interaction with nuclear magnetic moments—Hyperfine interaction with only one nucleus—Angular variation of hyper- fine pattern—Hyperfine pattern from more than one nucleus—	
	Superhyperfine patterns	23
EXP	ERIMENTAL TECHNIQUES	
2.1	Simple spectrometer systems	39
2.2	Sensitivity considerations	4 I
2 .3	Detector noise and its reduction —Factors affecting spectrometer sensitivity—Nuise variation with crystal current—Variation of crystal noise with frequency of detection	56
SPE	CTROMETER SYSTEMS	5

3.1	High-sensitivity spectrometers	
	-Elimination of low frequency crystal noise-High frequency	
	field modulation spectrometers—Superheterodyne spectrometer	
	systems—The use of microwave circulators	65
3.2	Averaging and integrating methods .	75
3.3	The integration of rapidly changing spectra	79
3.4	The study of transient reactions	
	-Methods of studying non-repetitive transient reactions-	
	Continuous flow systems—Sudden freezing techniques	84
3.5	Zero field spectrometers	92
3.6	Millimetre wave spectrometers	
	-Magnetic field requirements-4 mm spectrometer system-	
	2 mm wavelength spectrometer	96
3.7	Saturation effects	103
3.8	Measurement of relaxation times	108
3.9	Double resonance—ENDOR	
• •	-Basic principles-Experimental techniques in EN DOR	112

FREE-RADICAL AND IRRADIATION STUDIES

4.1	General features of a free radical spectrum	123
4.2	The analysis of hyperfine patterns	126

Contents

4.3	Radicals formed by high energy irradiation —Early experimental observations—More recent studies— The mechanism of formation of secondary radic: ls—Correlation	
	of secondary radicals and biological damage Radicals produced by other forms of radiation	131
4.4	—Production by thermal hydrogen atoms—Study of transient radicals formed by high-energy electrons	147
4.5	Studies on photo-synthesis and triplet state excitation -E.S.R. studies on photo-synthesis-Triplet state excitation	• 7 /
	in proteins	151
4.6	Radicals formed by pyrolysis	158
4.7	E.S.R. and carcinogenic activity	166
ENZ	CYME STUDIES	
5.I	The application of E.S.R. to the study of enzy nes	177
5.2	E.S.R. spectra from metal ions	0
	—g values of metal ions—Hyperfine structure in metal ions	178
5.3	General features of enzyme reaction	187
5.4	Studies on xanthine oxidase Studies on aldehyde oxidase	190
5.5 5.6	Studies on the dehydrogenases	197 198
5.0 5.7	The $g = 1.94$ signal associated with iron atom:	200
5.8	Studies on catalase and peroxidase	202
5.9	Studies on enzymes containing copper	207
		•
	E INVESTIGATION OF METALLO-ORGANIC	
CON	APOUNDS	
6.1	Transition group atoms and their role in biochemistry	212
6.2	Atomic orbitals and energy levels associated with transition group atoms	213
6.3	g-values and molecular field splittings	22 I
6.4	Proteins containing copper	226
6.5	Biochemical molecules containing cobalt	229
6.6	Studies on haemoglobin and related derivatives	
	-The haem plane and its surroundings—High spin and low spin states of the iron atom—Energy levels and anis stropy of the high	
	spin state—Haem plane orientation as determined from high	
	spin g values-Structural information from lov spin g values-	
	The study of line widths and hyperfine splitt ngs—Determina-	
,	tion of the zero-field splitting parameters	231
6.7	Electron resonance studies on non-haem irou in proteins	265
REC	ENT DEVELOPMENTS AND FUTURE PROSPECTS	
7. I	The application of saturation and double resonance studies to biochemical compounds	270
7.2	Relaxation studies on biochemical molecules	272
7·3	The application of double resonance techniques	277
7.4	Spin labelling techniques	285
7.5	Future prospects	290
AUT	THOR INDEX	301
SUF	BIECT INDEX	305
	·	5-5

5

6

7

.