Wolfgang R. Hess, Anita Marchfelder

Regulatory RNAs in Prokaryotes

SpringerWien NewYork

Contents

Rľ			ryotes			
1	Small RNAs with a Role in the Oxidative					
	Stres	ss Resp	onse of Bacteria	. 1		
	1	Introd	uction	. 1		
	2	OxyS	and the Oxidative Stress Response in Enterobacteria	. 3		
	3	The L	ink Between Iron Levels and Oxidative Stress, and the Role			
		of Ryl	ıB	. 5		
		3.1	How Iron Can Cause Oxidative Stress	. 5		
		3.2	Mechanisms of RyhB Regulation	. 6		
		3.3	RyhB Homologues in Other Bacteria	. 8		
	4	Photo	oxidative Stress-Induced sRNAs in Photosynthetic Alpha-			
		Protec	bacteria	. 9		
	5	Other	sRNAs Involved in Oxidative Stress Responses	10		
	6	Concl	uding Remarks	11		
	Refe	rences		12		
2	Hfq-associated Regulatory Small RNAs					
	1		uction	15		
		1.1	Trans-acting sRNAs and the Role for Hfq	16		
	2	Regul	atory Mechanisms Employed by Hfq-associated sRNAs	17		
		2.1	Translational Control Near the SD Sequence and AUG			
			Start Codon	17		
		2.2	Primary Role for sRNAs in Translational Silencing	17		
		2.3	Non-canonical Repression of Translation Initiation	20		
		2.4	Control of Protein Synthesis Through Regulation			
			of mRNA Decay	21		
		2.5	Multiple Target Control by sRNAs	22		
		2.6	Small RNAs with Multiple Conserved Targeting Regions	33		
		2.7	Unusually Complex Mechanisms	35		
		2.8	5' Regions as a Conserved Mechanism for Targeting			
			Multiple mRNAs	36		
		2.9	Maturation of Small RNAs	38		
		2.10	Potential Evolution of New sRNAs from 3' UTRs	39		
	3	Persp	ective	39		
		3.1	Overlap of sRNAs and Targets in Regulons	39		

		3.2	Titration of Hfq: Regulation or Side-effect?	. 40	
		3.3	Titration of Hfg: Implications for Horizontal Gene		
			Transfer	. 41	
		3.4	Design of Synthetic sRNAs	. 42	
	4	Outlo	ok	. 42	
	Refe	erences		. 43	
3		urrent (Overview of Regulatory RNAs in Staphylococcus Aureus .	. 51	
5	1		luction		
	2		cting Regulatory Elements in mRNAs		
	2	2.1	RNA Thermosensors		
		2.2	Riboswitches		
		2.2	Erythromycin-induced Translation Attenuation		
		2.5	tRNA-mediated Riboswitches		
		2.5	Protein-mediated Transcription Termination/Anti-	. 50	
		2.5	termination	. 58	
	3	Small	Non-coding RNAs Targeting mRNAs		
	5	3.1	Generalities		
		3.2	Pathogenicity Island-encoded sRNAs		
		3.3	sRNA Stress Response and Metabolism		
		3.3 3.4	sRNA and Small Colony Variant		
			-		
	4	3.5	S. aureus Transcriptome		
	4		III, a mRNA and a Regulatory RNA		
		4.1 4.2	Quorum Sensing and Virulence in <i>S. aureus</i>		
			RNAIII Encodes a Small Toxin		
		4.3	RNAIII as the Regulator		
	~	4.4	RNAIII and its Regulatory Network		
	5				
	6	-	ectives		
	Ref	erences		. 70	
4	Pse	udomon	as Aeruginosa Small Regulatory RNAs	. 77	
	1	Introd	luction	. 77	
	2	Bacte	rial Regulatory RNAs and their Mode of Action	. 79	
	3		uginosa Housekeeping RNAs		
	4	Protei	in Sequestering RNAs	. 82	
		4.1	RsmY/Z		
		4.2	CrcZ	. 85	
	5		ed and Candidate P. Aeruginosa Base-pairing sRNAs		
		5.1	Prrf 1/2		
		5.2	RgsA		
		5.3	PhrS and PhrD		
	6	CRIS			
	7		aracterized P. Aeruginosa sRNAs		
	8		lusion		
	-				

5	Natu	aral An	tisense Transcripts in Bacteria	. 95		
	1	Defin	ing Features of an Antisense Transcript	. 95		
	2		ense RNAs were Discovered in Bacteria			
		2.1	Known Facts About Antisense RNAs from			
			Bacteriophages, Plasmids and Transposons	. 97		
	3	Antis	ense Transcripts Come in High Numbers			
		and O	Occur Throughout the Bacterial Kingdom	. 98		
	4		rial Antisense RNAs are Functionally Important	100		
		4.1	How Bacterial Antisense RNAs Exert their Function	101		
	5	Outlo	ok	104		
	Refe	erences		104		
6	6S F	RNA: A	Regulator of Transcription	109		
	1	6S RN	NA – The Early Years	109		
	2	6S RN	NA Interactions with RNA Polymerase	110		
		2.1	6S RNA-RNA Polymerase: In Vivo Analysis	110		
		2.2	6S RNA-RNA Polymerase: In Vitro Analysis	110		
		2.3	6S RNA: A Mimic of Promoter DNA Near the Active Site	112		
		2.4	6S RNA: A Template for RNA Synthesis	113		
		2.5	The 6S RNA Upstream Region and σ^{70} Region 4.2 Does			
			Not Mimic Promoter DNA Interactions	114		
	3	6S R1	NA and Regulation of Transcription	116		
		3.1	Regulation of Transcription: In Vivo Analysis	116		
		3.2	Regulation of Transcription: In Vitro Approaches	117		
		3.3	6S RNA and Regulation of Transcription: Mechanism	118		
		3.4	6S RNA and σ^{s} -Dependent Transcription	119		
	4	Physi	ological Role of 6S RNA	120		
		4.1	6S RNA and Stationary Phase Cell Survival	120		
		4.2	6S RNA and Stress: Altered Survival at High pH	120		
		4.3	6S RNA Integration Into Global Pathways	121		
	5	Bioge	enesis of 6S RNA	122		
	6	6S R1	NAs in Diverse Bacterial Species	123		
		6.1	Identification	123		
		6.2	6S RNA Function in Other Species	124		
	7	Conc	luding Comments	125		
	Refe	erences		126		
7	Archaea Employ Small RNAs as Regulators					
	1	Introc	luction	131		
	2					
	2			133		
	3 4	-		134		
	4		RNAs in Halophilic Archaea	134		
		4.1	Prediction of sRNA Genes	136		
		4.2	Experimental Identification of Small RNAs	137		
		4.3	Expression of Small RNA Genes	137		

		4.4 Functional Analysis	138
		4.5 The <i>Haloferax</i> Lsm Protein	138
	5	Small RNAs in Methanogenic Archaea	139
		5.1 Un-translated Regions of mRNAs	140
		5.2 Small RNAs in <i>M. mazei</i>	140
	6	Conclusion	142
	Refe	ences	143
8	Stru	ture, Function and RNA Binding Mechanisms of the	
			147
	1		147
	2	Prevalence of the Sm Fold	148
	3	Biochemical and Genetic Analysis of Hfq	148
		3.1 The RNA-binding Modes of Hfq	150
		3.2 Hfq-mediated sRNA-mRNA Annealing	150
	4	Hfq in RNA decay	151
	5	The Role of the C-terminus of Hfq Proteins	153
	6		154
		6.1 Hfq in Cyanobacteria	155
			156
	7	•	157
	Refe	ences	158
9	CRI	PR/Cas and CRISPR/Cmr Immune Systems of Archaea	163
	1		163
	2		165
	3	Diversity of Archaeal CRISPR/Cas and CRISPR/Cmr Immune	
		Systems	167
	4	Development and Stability of CRISPR Loci	170
	5		172
	6		172
	7		174
	8		175
	9		177
	10	Conclusions	178
	Refe	ences	179
10	Cont	ol of Bacterial Heat Shock and Virulence Genes by RNA	
			183
	1		183
	2	·	185
	3		185
	4		189
	5		189
	6	· · ·	190
	Refe		191

11	RNA	Sensors of Intracellular Metabolites	195
	1	Introduction. Gene Regulation in Bacteria: From Transcription	
		Initiation to mRNA Degradation	195
	2	Sensing of Metabolites by Cis-Acting Regulatory mRNAs	200
		2.1 Riboswitch RNAs	200
		2.2 Purine Riboswitch Gene Regulation Mechanisms	201
		2.3 Therapeutic Applications Using Purine Riboswitches	203
	3	Indirect Sensing of Metabolites by Cis-Acting Regulatory RNAs	205
		3.1 Sensing of Amino Acids via tRNA Charging Ratios	205
		3.2 Sensing of Amino Acids via tRNA Charging Ratios:	
		Ribosome-Mediated Attenuation	208
		3.3 Sensing of Amino Acids via tRNA Charging Ratios:	
		Direct Sensing of Uncharged tRNAs	209
		3.4 Sensing of Amino Acids via tRNA Charging Ratios:	
		mRNA-Binding tRNA Synthetases	211
		3.5 Sensing of Metabolites by RNA-Binding Proteins:	
		Amino Acids	212
		3.6 Sensing of Metabolites by RNA-Binding Proteins:	
		5	213
	4	Concluding Remarks	214
	Refer	rences	215
12		0	221
	1	1	221
			221
		e	222
	•		226
	2	1 6	227
			227
		1	228
			230
			231
			233
	Refer	ences	235
12	Com	putational Tools for Predicting sRNA Targets	241
15			241
	1		242
		-	242
		-	243
		8	243
	2		244
	-	6 6	245
			246
		2.3 Predicting sRNA Targets Under Linux as the Operating	- 10
		• • • •	250
		5,500m	200

3	Other Program Tools for Predicting sRNA Targets	. 250
	3.1 IntaRNA	. 250
	3.2 TargetRNA	. 251
4	An Example, Target Prediction for sRNA Yfr1	. 251
5	Future Thinking	. 252
Refe	eferences	. 253
Index .		. 255