1. Predicate / Transition Nets

H.J. Genrich

Abstract: The paper deals with conceptual, mathematical and practical aspects of developing a net theoretic system model. The model presented is based on common techniques of modelling static systems as structured sets of individuals (relational structures). These structures are 'dynamised' by allowing some relations between individuals to be changed by the processes of the modelled system.

Keywords: Predicate/transition nets (PrT-nets); higher-level Petri nets; variable relational structures; logical and linear-algebraic system invariants.

Contents

1 Introduction

2 Predicate/Transition Nets
 2.1 The Language for Structures
 2.2 The Basic Form of PrT-Nets
 2.3 The CE-Semantics of PrT-Nets
 2.4 The Symbolic Transition Rule

3 Extensions of the Basic Form of PrT-Nets
 3.1 Many-sorted Structures
 3.2 More General Places
 3.3 More General Arcs
 3.4 Multi-Sets and the Weak Transition Rule
 3.5 Place Projections
 3.6 Structures as Parameters
 3.7 Other Formalisms for Structures

4 Logical Invariants of PrT-Nets
 4.1 Dead Transitions and Universal Invariants
 4.2 Existential Invariants and Skolem Places

5 Linear Algebraic Analysis of PrT-Nets
 5.1 Some Basic Mathematics
 5.2 The Representation of Linear Transformations
 5.3 The Compression of Matrices
 5.4 Structured Colours and Individual Variables
 5.5 Computing δ-invariants
 5.6 Two Examples

Conclusion, References
Table of Contents

Section A: Predicate / Transition Nets and Coloured Petri Nets

1. Predicate / Transition Nets .. 3
 H.J. Genrich

 K. Jensen

Section B: High-level Nets and Abstract Data Types

3. Many-sorted High-level Nets .. 123
 J. Billington

4. Petri Nets and Algebraic Specifications 137
 W. Reisig

5. Types and Modules for Net Specifications 171
 B. Krämer and H.W. Schmidt

6. OBJSA Nets: A Class of High-level Nets Having Objects as Domains .. 189
 E. Battiston, F. De Cindio and G. Mauri

Section C: Hierarchical High-level Nets

 P. Huber, K. Jensen and R.M. Shapiro

Section D: Analysis by Means of Invariants

8. Analysing Nets by the Invariant Method 247
 G. Memmi and J. Vautherin
9. Linear Invariants in Commutative High Level Nets 284
 J.M. Couvreur and J. Martínez

10. Generalized Inverses and the Calculation of Symbolic
 Invariants for Coloured Petri Nets ... 303
 M. Silva, J. Martínez, P. Ladet and H. Alla

Section E: Analysis by Means of Reachability Graphs

11. Reachability Trees for High-level Petri Nets 319
 P. Huber, A.M. Jensen, L.O. Jepsen and K. Jensen

12. Parameterized Reachability Trees for Predicate/Transition Nets 351
 M. Lindqvist

13. On Well-Formed Coloured Nets and Their Symbolic
 Reachability Graph .. 373
 G. Chiola, C. Dutheillet, G. Franceschinis and S. Haddad

Section F: Analysis by Means of Transformations

14. A Reduction Theory for Coloured Nets 399
 S. Haddad

15. Equivalence Transformations of PrT-Nets 426
 H. J. Genrich

Section G: Analysis of Stochastic Nets

16. Stochastic High-level Petri Nets and Applications 459
 C. Lin and D.C. Marinescu

17. Regular Stochastic Petri Nets 470
 C. Dutheillet and S. Haddad

18. Automated Construction of Compound Markov Chains from
 Generalized Stochastic High-level Petri Nets 494
 J.A. Carrasco

19. Stochastic Well-Formed Coloured Nets and Multiprocessor
 Modelling Applications .. 504
 G. Chiola, C. Dutheillet, G. Franceschinis and S. Haddad
Section H: Applications of High-level Nets

 G. Balbo, S.C. Bruell, P. Chen and G. Chiola

 J. Billington, G.R. Wheeler and M.C. Wilbur-Ham

 C. Girault, C. Chatelain and S. Haddad

23. Use of Reentrant Nets in Modular Analysis of Colored Nets 596
 G. Chehaibar

24. Modeling, Validation and Software Implementation of Production Systems Using High Level Petri Nets 618
 J. Martinez, P. Muro and M. Silva

25. PROTOB: An Object Oriented Methodology for Developing Discrete Event Dynamic Systems 624
 M. Baldassari and G. Bruno

26. An Integrated Software Development Methodology Based on Hierarchical Colored Petri Nets .. 649
 V. Pinci and R.M. Shapiro

27. Validation of a VLSI Chip Using Hierarchical Colored Petri Nets ... 667
 R.M. Shapiro

Section I: Computer Tools for High-level Nets

28. Computer Tools for High-level Petri Nets ... 691
 F. Feldbrugge and K. Jensen

Appendix

Petri Net Activities ... 719
Contributing Authors ... 721