21st Century Guidebook to Fungi

David Moore Geoffrey D. Robson Anthony P. J. Trinci

Faculty of Life Sciences The University of Manchester

CONTENTS

	Preface p	<i>age</i> ix
, Part I	Nature and origins of fungi	1
1	21st century fungal communities	3
1.1	What and where are fungi?	4
1.2	Soil, the essential terrestrial habitat	5
1.3	How much soil is there and where is it?	5
1.4	The nature of soil and who made it	5
1.5	Soil biota are extremely varied and numerous	5 7
1.6	Microbial diversity in soil	7
1.7	Microbial diversity in general	8
1.8	Geomycology	9
1.9	The origins of agriculture and our dependence	e
	on fungi	10
1.10	References and further reading	15
2	Evolutionary origins	18
2.1	Life, the universe and everything	19
2.2	Planet Earth: your habitat	21
2.3	The Goldilocks planet	21
2.4	The tree of life has three domains	23
2.5	The Kingdom Fungi	29
2.6	The opisthokonts	30
2.7	Fossil fungi	31
2.8	The fungal phylogeny	35
2.9	References and further reading	38
3	Natural classification of fungi	41
3.1	The members of the Kingdom Fungi	42
3.2	The chytrids	42
3.3	More chytrids: the Neocallimastigomycota	45
3.4	Blastocladiomycota	46
3.5	Glomeromycota	50
3.6	The traditional Zygomycota	52
3.7	Ascomycota	55
3.8	Basidiomycota	61
3.9	The species concept in fungi	71
3.10	The untrue fungi	75

÷

3.11	Ecosystem mycology	77
3.12	References and further reading	79
Part II	Fungal cell biology	83
4	Hyphal cell biology and growth on solid	
	substrates	85
4.1	Mycelium: the hyphal mode of growth	86
4.2	Spore germination and dormancy	86
4.3	The fungal lifestyle: colony formation	86
4.4	Mycelium growth kinetics	88
4.5	Colony growth to maturity	91
4.6	Morphological differentiation of fungal colonies	92
4.7	Duplication cycle in moulds	92
4.8	Regulation of nuclear migration	93
4.9	Growth kinetics	94
4.10	Autotropic reactions	96
4.11	Hyphal branching	97
4.12	Septation	99
4.13	Ecological advantage of mycelial growth in	
	colonising solid substrates	100
4.14	References and further reading	101
5	Fungal cell biology	104
5.1	Mechanisms of mycelial growth	105
5.2	The fungus as a model eukaryote	105
5.3	The essentials of cell structure	107
5.4	Subcellular components of eukaryotic cells:	
	the nucleus	108
5.5	The nucleolus and nuclear import and export	112
5.6	Nuclear genetics	114
5.7	Mitotic nuclear division	115
5.8	Meiotic nuclear division	117
5.9	Translation of mRNA and protein sorting	118
5.10	The endomembrane systems	121
5.11	Cytoskeletal systems	125
5.12	Molecular motors	127
5.13	Plasma membrane and signalling pathways	133
5.14	Fungal cell wall	136

5.15	Cell biology of the hyphal apex	137
5.16	Hyphal fusions and mycelial interconnections	142
5.17	Cytokinesis and septation	144
5.18	Yeast-mycelial dimorphism	150
5.19	References and further reading	151
6	Structure and synthesis of fungal cell walls	156
6.1	The fungal wall as a working organelle	157
6.2	Fundamentals of wall structure and function	157
6.3	Fundamentals of wall architecture	160
6.4	The chitin component	160
6.5	The glucan component	162
6.6	The glycoprotein component	163
6.7	Wall synthesis and remodelling	165
6.8	On the far side	168
6.9	The fungal wall as a clinical target	171
6.10	References and further reading	172
Part III	Fungal genetics and diversity	177
7	From the haploid to the functional diploid:	
	homokaryons, heterokaryons, dikaryons	
	and compatibility	179
7.1	Compatibility and the individualistic mycelium	180
7.2	Formation of heterokaryons	181
7.3	Breakdown of a heterokaryon	183
7.4	The dikaryon	183
7.5	Vegetative compatibility	185
7.6	Biology of incompatibility systems	188
7.7	Gene segregation during the mitotic division cycle	189
7.8	Parasexual cycle	194
7.9	Cytoplasmic segregations: mitochondria,	
	plasmids, viruses and prions	194
7.10	References and further reading	197
8	Sexual reproduction: the basis of diversity and	
÷	taxonomy	198
8.1	The process of sexual reproduction	199
8.2	Mating in budding yeast	200
8.3	Mating type switching in budding yeast	201
8.4	Mating types of Neurospora	203
8.5	Mating types in Basidiomycota	205
8.6	Biology of mating type factors	210
8.7	References and further reading	211
9	Continuing the diversity theme: cell and tissue	
	differentiation	213
9.1	What is diversity?	214
9.2	Mycelial differentiation	214
9.3	Making spores	216

0.4		220
9.4	Aspergulus contatophores	220
9.5	Condition in Neurospora crassa	223
9.6	Condiomata	223
9.7	Linear structures: strands, cords, mizomorphs	225
0.0	Clabace etructures coloratio etromata	225
9.0	assempts and basidiamets	227
0.0	Ascomata and Dasidiomata	227
9.9	References and further reading	231
Part IV	Biochemistry and developmental biology	
	of fungi	235
10	Fungi in ecosystems	237
10.1	Contributions of fungi to ecosystems	238
10.2	Breakdown of polysaccharide: cellulose	239
10.3	Breakdown of polysaccharide: hemicellulose	240
10.4	Breakdown of polysaccharide: pectins	241
10.5	Breakdown of polysaccharide: chitin	241
10.6	Breakdown of polysaccharide: starch and	
	glycogen	241
10.7	Lignin degradation	242
10.8	Digestion of protein	246
10.9	Lipases and esterases	247
10.10	Phosphatases and sulfatases	247
10.11	The flow of nutrients: transport and	
	translocation	247
10.12	Primary (intermediary) metabolism	251
10.13	Secondary metabolites, including commercial	
	products like statins and strobilurins	257
10.14	References and further reading	264
11	Exploiting fungi for food	266
11.1	Fungi as food	267
11.2	Fungi in food webs	267
11.3	Wild harvests: commercial mushroom picking	272
11.4	Cells and mycelium as human food	274
11.5	Fermented foods	274
11.6	Industrial cultivation methods	275
11.7	Gardening insects and fungi	279
11.8	Development of a fungal fruit body	280
11.9	References and further reading	280
17	Development and morphogeneoic	202
12.1	Development and morphogenesis	202
12.1	The formal terminology of developmental	دە∠
12.2	hiology	202
10.0	The observational and experimental basis of	ده2
12.3	fundal developmental biology	70E
124	Ten ways to make a mushroom	200
12.4 12.5	Competence and regional patterning	200 280
12.9	competence and regional patterning	203

Contents

vii

12.6	The Coprinopsis fruit body: making hymenia	291
12.7	Coprinopsis and Volvariella making gills (not	
	forgetting how polypores make tubes)	295
12.8	The Coprinopsis fruit body: making stems	301
12.9	Coordination of cell inflation throughout the	
	maturing fruit body	304
12.10	Mushroom mechanics	305
12.11	Metabolic regulation in relation to	
	morphogenesis	305
12.12	Developmental commitment	308
12.13	Comparisons with other tissues and other	
	organisms	310
12.14	Classic genetic approaches to study development	
	and the impact of genomic data mining	311
12.15	Degeneration, senescence and death	315
12.16	Basic principles of fungal developmental biology	316
12.17	References and further reading	316
Part V	Fungi as saprotrophs, symbionts and	
	pathogens	323
13	Ecosystem mycology: saprotrophs, and	
	mutualisms between plants and fungi	325
13.1	Ecosystem mycology	326
13.2	Fungi as recyclers and saprotrophs	326
13.3	Make the earth move	328
13.4	Fungal toxins: food contamination and	
	deterioration (including mention of statins	
	and strobilurins)	328
13.5	Decay of structural timber in dwellings	331
13.6	Using fungi to remediate toxic and	
	recalcitrant wastes	334
13.7	Release of chlorohydrocarbons into the	
	atmosphere by wood-decay fungi	336
13.8	Introduction to mycorrhizas	336
13.9	Types of mycorrhiza	337
13.10	Arbuscular (AM) endomycorrhizas	338
13.11	Ericoid endomycorrhizas	341
13.12	Arbutoid endomycorrhizas	343
13.13	Monotropoid endomycorrhizas	343
13.14	Orchidaceous endomycorrhizas	344
13.15	Ectomycorrhizas	346
13.16	Ectendomycorrhizas	351
13.17	The effects of mycorrhizas and their	
15.17	commercial applications and the impact of	
	environmental and climate changes	351
13 19	Introduction to lichens	356
13.10	Introduction to endonbytes	360
12.13	Fninhytes	361
13.20	References and further reading	361
12.21	References and further reading	וטכ

14	Fungi as pathogens of plants	367
14.1	Fungal diseases and loss of world agricultural	
	production	368
14.2	A few examples of headline crop diseases	370
14.3	The rice blast fungus Magnaporthe grisea	
	(Ascomycota)	370
14.4	Armillaria (Basidiomycota)	370
14.5	Pathogens that produce haustoria	
	(Ascomycota and Basidiomycota)	371
14.6	Cercospora (Ascomycota)	372
14.7	<i>Ophiostoma (Ceratocystis) novo-ulmi (Dutch</i>	
	elm disease or DED) (Ascomycota)	372
14.8	Black stem rust (<i>Puccinia graminis</i> f. sp. <i>tritici</i>)	
	threatens global wheat harvest	373
14.9	Plant disease basics: the disease triangle	374
14.10	Necrotrophic and biotrophic pathogens of plants	376
14.11	The effects of pathogens on their hosts	376
14.12	How pathogens attack plants	379
14.13	Host penetration through stomatal openings	379
14.14	Direct penetration of the host cell wall	382
14.15	Enzymatic penetration of the nost	382
14.16	Preformed and induced defence mechanisms	205
14.17	in plants	385
14.17	Genetic variation in pathogens and their	207
14 10	Rosts: co-evolution of disease systems	387
14.18	References and further reading	203
15	Fungi as symbionts and predators of animals	392
15.1	Fungal co-operative ventures	393
15.2	Ant agriculture	393
15.3	Termite gardeners of Africa	398
15.4	Agriculture in beetles	399
15.5	Anaerobic fungi and the rise of the ruminants	400
15.6	Nematode-trapping fungi	405
15.7	References and further reading	408
16	Fungi as pathogens of animals, including	
	humans	411
16.1	Pathogens of insects	412
16.2	Microsporidia	412
16.3	Trichomycetes	414
16.4	Laboulbeniales	416
16.5	Entomogenous fungi	417
16.6	Biological control of arthropod pests	421
16.7	Cutaneous chytridiomycosis: an emerging	
	infectious disease of amphibians	422
16.8	Aspergillosis disease of coral	424
16.9	Mycoses: the fungus diseases of humans	424
16.10	Clinical groupings for human fungal infections	426

16.11	Fungi within the home and their effects on	
	health: allergens and toxins	432
16.12	Comparison of animal and plant pathogens	
	and the essentials of epidemiology	436
16.13	Mycoparasitic and fungicolous fungi	439
16.14	References and further reading	444
Part VI	Fungal biotechnology and bioinformatics	449
a 17	Whole organism biotechnology	451
17.1	Fungal fermentations in submerged liquid	
	cultures	452
17.2	Culturing fungi	452
17.3	Oxygen demand and supply	456
17.4	Fermenter engineering	458
17.5	Fungal growth in liquid cultures	460
17.6	Fermenter growth kinetics	462
17.7	Growth yield	464
17.8	Stationary phase	465
17.9	Growth as pellets	466
17.10	Beyond the batch culture	469
17.11	Chemostats and turbidostats	470
17.12	Uses of submerged fermentations	473
17.13	Alcoholic fermentations	474
17.14	Citric acid biotechnology	477
17.15	Penicillin and other pharmaceuticals	478
17.16	Enzymes for fabric conditioning and	
	processing, and food processing	483
17.17	Steroids and use of fungi to make chemical	
	transformations	486
17.18	The Quorn [™] fermentation and evolution in	
	fermenters	487
17.19	Production of spores and other inocula	492
17.20	Natural digestive fermentations in	
	herbivores	493
17.21	Solid state fermentations	494
17.22	Digestion of lignocellulosic residues	497
17.23	Bread: the other side of the alcoholic	
	fermentation equation	499
17.24	Cheese and salami manufacture	501
17.25	Soy sauce, tempeh and other food products	504
17.26	References and further reading	506

18	Molecular biotechnology	511
18.1	Antifungal agents that target the membrane	512
18.2	Antifungal agents that target the wall	521
18.3	Clinical control of systemic mycoses at the	
	start of the 21st century: azoles, polyenes and	
	combinatorial therapy	522
18.4	Agricultural mycocides at the start of the	
	twenty-first century: strobilurins	526
18.5	Understanding fungal genetic structure	529
18.6	Sequencing fungal genomes	531
18.7	Annotating the genome	535
18.8	Fungal genomes and their comparison	540
18.9	Manipulating genomes: targeted gene	
	disruption, transformation and vectors	547
18.10	Fungi as cell factories producing heterologous	
	proteins	552
18.11	Recombinant protein production by filamentou	s
	fungi	554
18.12	Bioinformatics in mycology: manipulating	
	very large data sets	557
18.13	Genomic data mining supports the notion that	
	there are different developmental control	
	mechanisms in fungi, animals and plants	560
18.14	Effects of climate change on fungi revealed	
	by analysis of large survey data sets	562
18.15	Cyber fungi: mathematical modelling and	
	computer simulation of hyphal growth	563
18.16	References and further reading	567
Devt VII	Annandian	630
Part VI	Appendices	5/3
	Appendix 1 Outline classification of lungi	575
	Appendix 2 Mycelial and hyphal differentiation	589
	Index	605
	Plate sections: Section 1 between pages 148 and	149
	Section 2 between pages 340 and	341
	1 5	