Control of Messenger RNA Stability

Edited by

Joel G. Belasco

Department of Microbiology and Molecular Genetics Harvard Medical School Boston, Massachusetts

George Brawerman

Department of Biochemistry Tufts University Boston, Massachusetts

Harcourt Brace Jovanovich, Publishers

Contents

Contributors xiii Preface xvii

PART I

PROKARYOTES

1

mRNA Degradation in Prokaryotic Cells: An Overview

Joel G. Belasco

- I. Introduction 3
- II. Ribonucleases 5
- III. Structural Determinants of mRNA Stability and Instability 6
- IV. Mechanisms of mRNA Degradation 8 References 11

2

The Role of the 3' End in mRNA Stability and Decay

Christopher F. Higgins, Helen C. Causton, Geoffrey S. C. Dance, and Elisabeth A. Mudd

- I. Introduction 13
- II. The 3'-5' Exoribonucleases: PNPase and RNase II 16
- III. 3' Stem-Loop Structures Stabilize Upstream mRNA 18
- IV. How Do Stem-Loop Structures Stabilize Upstream mRNA? 20
- V. 3' Stem-Loop Structures Influence Gene Expression 21
- VI. Degradation of mRNA Stabilized by 3' Stem-Loops 23

vi Contents

VII. Stem-Loop-Binding Proteins 24

VIII. Chloroplasts 25

IX. Concluding Remarks: The Role of the 3' End in Regulation 26 References 27

3

5' mRNA Stabilizers

David Bechhofer

- I. Introduction 31
- II. Function of a 5' Stabilizer 32
- III. Escherichia coli trp mRNA 37
- IV. Escherichia coli ompA Message 39
- V. erm Genes of Gram-Positive Bacteria 45
- VI. Conclusions 50 References 50

4

RNA Processing and Degradation by RNase K and RNase E

Öjar Melefors, Urban Lundberg, and Alexander von Gabain

- I. Introduction 53
- II. Original Phenotypes of the *Escherichia coli ams*^{ts} and *rne*^{ts}

 Mutations 54
- III. The ams^{ts} and rne^{ts} Mutations Map to the Same Gene 55
- IV. The Endoribonucleases RNase K and RNase E 56
- V. The ams/rne Gene Product and Its Relation to RNase K and RNase E 58
- VI. ams/rne-Dependent Cleavage Sites 63
- VII. Concluding Summary 66

References 67

5

RNA Processing and Degradation by RNase III Donald Court

- I. Introduction 71
- II. RNase III Enzyme and Its Substrates 71
- III. rnc: The Gene for RNase III 79

Contents vii

- IV. Regulation of rnc Expression and RNase III Activity 83
- V. Ribosomal RNA Processing 85
- VI. Control of Gene Expression by RNase III 87
- VII. RNase III of Schizosaccharomyces pombe and Other Organisms 106
- VIII. Homology between RNase III and Other Double-Strand RNA-Binding Proteins 107

References 108

6

Translation and mRNA Stability in Bacteria: A Complex Relationship

Carsten Petersen

- I. The Relation of Translation to mRNA Stability 117
- II. Effects of Interfering with Translation on mRNA Stability 119
- III. The Expected Relation between Translation Frequency and mRNA Stability 123
- IV. The Observed Relation between Translation Frequency and mRNA Stability 130
- V. Conclusion 137

Appendix 138

References 141

PART II

EUKARYOTES

7

mRNA Degradation in Eukaryotic Cells: An Overview

George Brawerman

- I. Importance in Control of Gene Expression 149
- II. Basis for Selectivity in mRNA Degradation 150
- III. Nucleases Involved in mRNA Decay, and Their Targets 153
- IV. Relation of mRNA Decay to the Translation Process 156 References 159

8

Hormonal and Developmental Regulation of mRNA Turnover

David L. Williams, Martha Sensel, Monica McTigue, and Roberta Binder

- I. Introduction 161
- II. History 162
- III. Mechanistic Aspects of Regulated mRNA Turnover 169
- IV. Linkage to Signal Transduction Pathways 171
- V. Turnover Elements and trans-Acting Turnover Factors 177
- VI. Degradation Target Sites and Nucleases 182
- VII. Summary and Perspective 188 References 190

9

Control of the Decay of Labile Protooncogene and Cytokine mRNAs

Michael E. Greenberg and Joel G. Belasco

- I. Introduction 199
- II. The Sequence Determinants Controlling ERG mRNA Decay 202
- III. Mechanisms of mRNA Decay: The Importance of Protein Synthesis 207
- IV. Deadenylation as the First Step in ERG mRNA Decay 209
- V. The Cellular Factors That Control Rapid ERG mRNA Decay 213
- VI. Conclusions 215

References 215

10

Translationally Coupled Degradation of Tubulin mRNA

Nicholas G. Theodorakis and Don W. Cleveland

- I. Introduction 219
- II. Tubulin Synthesis Is Autoregulated 220
- III. Tubulin Synthesis Is Regulated by Changes in the Stability of Cytoplasmic Tubulin mRNAs 223
- IV. The Minimal Regulatory Sequence That Confers the Selective Instability of β-Tubulin mRNA Is the First Four Translated Codons 223

Contents ix

- V. Degradation of β -Tubulin mRNA Is Mediated by Cotranslational Binding of a Cellular Factor to the β -Tubulin Nascent Peptide 224
- VI. What Binds to the Nascent β-Tubulin Peptide? 229
- VII. Regulation of α -Tubulin Synthesis 231
- VIII. Other Mechanisms Regulating Tubulin Expression 233
- IX. A Model for Cotranslational Tubulin RNA Degradation: Parallels with Other Examples of Cotranslational mRNA Decay 234 References 236

11

Iron Regulation of Transferrin Receptor mRNA Stability

Joe B. Harford

- I. Overview of Cellular Iron Homeostasis 239
- II. Iron Acquisition 240
- III. Iron Sequestration 240
- IV. Regulation of Cellular and Iron Homeostasis 240
- V. The Iron-Responsive Element-Binding Protein as the Cellular "Ferrostat" 243
- VI. The Rapid Turnover Determinant of the Transferrin Receptor mRNA 247
- VII. The Structure of the TfR mRNA Regulatory Region 252
- VIII. The Mechanism of TfR mRNA Decay 256
 - IX. Summary and Perspectives 261 References 262

12

Degradation of a Nonpolyadenylated Messenger: Histone mRNA Decay

William F. Marzluff and Roberta J. Hanson

- I. Introduction 267
- II. Control of Histone mRNA Stability 270
- III. Biochemical Mechanisms Regulating Histone mRNA Degradation 275
- IV. Cell-Cycle Specific Signals and Histone mRNA Degradation 285
- V. Why Degrade Histone mRNA? 286 References 287

13

mRNA Turnover in Saccharomyces cerevisiae Stuart W. Peltz and Allan Jacobson

- I. Introduction 291
- II. Measurement of mRNA Decay Rates in Yeast 293
- III. Are Nonspecific Determinants Important Effectors of the Differences between Stable and Unstable mRNAs? 298
- IV. cis-Acting Determinants of mRNA Instability 301
- V. Approaches to Identifying trans-Acting Factors Involved in mRNA
 Decay 310
- VI. Why Are Translation and Turnover Intimately Linked? 318
 References 321

14

Control of mRNA Degradation in Organelles Wilhelm Gruissem and Gadi Schuster

- I. Introduction 329
- II. Post-transcriptional Control of mRNA Accumulation 331
- III. Roles of Nuclear Proteins in Organelle mRNA Stability 341
- IV. Role of Translation in Organelle mRNA Stability 346
- V. cis- and trans-Factors Affecting Organelle mRNA Stability 348
- VI. Conclusions 359 References 360

15

Control of Poly(A) Length

Ellen J. Baker

- I. Background: Poly(A) and the Poly(A)-Binding Protein 367
- II. Poly(A) Addition in the Nucleus 370
- III. Cytoplasmic Poly(A) Metabolism 376
- IV. Polyadenylation and Deadenylation in Gametes and Early Embryos 388
- V. The Role of Poly(A) in mRNA Stability 400
- VI. Concluding Comments 406 References 407

X

mRNA Decay in Cell-Free Systems Jeff Ross

- I. Introduction 417
- II. Rationale 417
- III. Useful Approaches for Analyzing mRNA Stability in Vitro 420
- IV. mRNA Decay Pathways, mRNases, and Regulatory Factors Identified in Cell-Free mRNA Decay Systems 426
- V. Future Directions 440 References 444

17

Eukaryotic Nucleases and mRNA Turnover Audrey Stevens

- I. Introduction 449
- II. Hydrolysis of mRNA Cap Structures 451
- III. Exoribonucleases 455
- IV. Endonucleases 460
- V. mRNA Deadenylating Enzymes 463
- VI. Concluding Remarks 465 References 467

PART III

METHODS OF ANALYSIS

18

Experimental Approaches to the Study of mRNA Decay

Joel G. Belasco and George Brawerman

- I. Kinetics of mRNA Decay 475
- II. Measurement of Decay Rates 476
- III. Estimation of Changes in mRNA Stability by Comparison of Transcription Rates and Relative mRNA Levels 485
- IV. Measurement of Poly(A) Sizes 486
- V. Identification of Structural Elements That Affect mRNA
 Stability 489

References 491