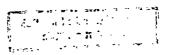
Paleomagnetic Rotations and Continental Deformation


edited by

Catherine Kissel

and

Carlo Laj

Centre des Faibles Radioactivités, Laboratoire mixte CNRS/CEA, Gif-sur-Yvette, France

Kluwer Academic Publishers

Dordrecht / Boston / London

Published in cooperation with NATO Scientific Affairs Division

Table of Contents

PREFACE	xν
BLOCK ROTATIONS IN CONTINENTÂL CRUST: EXAMPLES FROM WESTERN NORTH AMERICA	
by M. E. BECK	1
1. Introduction 2. Definitions	1 3
3. Types of rotation and their characteristics	3
4. Discussion	12
THE KINEMATICS AND DYNAMICS OF DISTRIBUTED DEFORMATION	
by D. McKENZIE and J. JACKSON	17
1. Introduction	17
2. Fluid Dynamics	17
3. Rotations about Vertical Axes in Deforming Zones4. Pinned or Floating Blocks?	21 26
5. Kinematic Stability	20 28
6. Conclusion	28 29
	27
RELATIONS BETWEEN SEISMICITY AND PALEOMAGNETIC ROTATIONS IN ZONES OF DISTRIBUTED CONTINENTAL DEFORMATION	
by J. JACKSON and D. McKENZIE	33
1. Introduction	33
2. A simple description of continuous deformation	34
3. Seismicity and distributed deformation	36
4. An example of distributed deformation achieved by faulting	38
THE DETECTION OF ROTATIONS BY SURVEYING TECHNIQUES	
by P. A. CROSS	43
1. Introduction	43
2. Terrestrial method	44
3. Satellite techniques	45
4. The surveying estimation process	56
5. Assessement of quality	60
6. Optimal design methods	63
7. Conclusions	65

•

8

•

GEODETIC MEASUREMENTS OF CONTINENTAL DEFORMATIONS: PROJECTS	
AND FIRST RESULTS	
by E. GEISS, CH. REIGBER, and P. SCHWINTZER	69
1.Introduction	69
2. Methods	71
3. Data	72
4. Comparison with a Plate Tectonic Model	73
5. Interpolation Techniques	78
6. Conclusions	79
CONTINENTAL ROTATIONAL DEFORMATION: EXAMPLES FROM GREECE	
by S. PAVLIDES	83
1. Introduction	83
2. Neotectonic rotational deformation in Chalkidiki Peninsula (Northern Greece).	85
3. Paleomagnetic and structural evidence for recent deformation in the South	
Aegean Active Arc (Melos Island).	89
4. Conclusion	91
CENOZOIC MAGMATISM, DEEP TECTONICS, AND CRUSTAL DEFORMATION IN	
THE AEGEAN SEA	_
by G.A. PAPADOPOULOS	95
1. Introduction	95
2. The data	96
3. Space-time distribution of the magmatism	96
4. Petrochemistry	98
5. Implications for the deep tectonics	99
6. Discussion	105
A PATTERN OF BLOCK ROTATIONS IN CENTRAL AEGEA	
by C. KISSEL, C. LAJ, A. POISSON, and K. SIMEAKIS.	115
1. Introduction	115
2. Geological setting.	116
3. Paleomagnetic method	119
4. Results and discussion.	120
5. Conclusion	127
LATE CENOZOIC ROTATONS ALONG THE NORTH AEGEAN TROUGH FAULT	
ZONE (GREECE); STRUCTURAL CONSTRAINTS	
by C. SIMEAKIS, J.L. MERCIER, P. VERGELY and C. KISSEL	131
1. Introduction	131
2. Kinematics of the Late Cenozoic faults in the Aegean basins located on both	
sides of the North Aegean trough fault zone	133

viii

•

 Directions of the Early Cenozoic folds on both sides of the western termination of the North Aegean trough Conclusions 	137 139
SOME EXPERIMENTS ON BLOCK ROTATION IN THE BRITTLE UPPER CRUST by P.R. COBBOLD, J.P. BRUN, P. DAVY, G. FIQUET, C. BASILE and D. GAPAIS	145
 Introduction Domino domains in Coulomb materials. Pull-apart domino Continental indentation. Conclusions 	145 146 150 150 153
LARGE RATES OF ROTATION IN CONTINENTAL LITHOSPHERE. UNDERGOING DISTRIBUTED DEFORMATION. by P. ENGLAND	157
 Introduction Deformation of the continental lithosphere Discussion 	157 158 163
STRAIN AND DISPLACEMENT IN THE BRITTLE FIELD by P. CHOUKROUNE	165
 Introduction The local characteristics of strain in the brittle field. The spatial integration of local strain data: the use of strain trajectories. Conclusion. 	165 166 175 178
REGIONAL DEFORMATION BY BLOCK TRANSLATION AND ROTATION by Z. GARFUNKEL	181
 Introduction Deformation by block displacement and rotation: kinematics. Pre- and post-faulting deformation Faults as surfaces of weakness Relation between shallow and deep crustal deformation Concluding remarks 	181 183 194 196 199 203
MECHANICS OF DISTRIBUTED FAULT AND BLOCK ROTATION by A. NUR, H. RON and O. SCOTTI	209
 Blocks and fault rotations Field evidence Material rotation vs. stress field rotation Relevance to geodynamics Relevance to earthquake prediction. 	209 213 221 222 224

ix

6. Conclusion	225
CRUSTAL ROTATION AND FAULT SLIP IN THE CONTINENTAL TRANSFORM ZONE IN SOUTHERN CALIFORNIA	
by B. P. LUYENDYK	229
1. Introduction	229
2. Facts concerning deformation	230
3. Amounts of dextral shear	235
4. History of fault movements	238
5. What has been learned?	242
6. Questions and problems remaining	242
EVIDENCE FOR CONTEMPORARY BLOCK ROTATION IN STRIKE-SLIP ENVIRONMENTS: EXAMPLES FROM THE SAN ANDREAS FAULT SYSTEM, SOUTHERN CALIFORNIA	
by C. NICHOLSON and L. SEEBER	247
1. Introduction	247
2. Data and interpretations	250
3. Discussion	272
THE IMPORTANCE OF MAGNETOSTRATIGRAPHY FOR STUDIES OF TECTONIC ROTATIONS: EXAMPLES FROM THE MIO-PLIOCENE OF CALIFORNIA	
by K. L. VEROSUB and E. J. HOLM	281
1. Introduction	281
2. Ridge Basin	283
3. Purisima Formation 4. Conclusion	287 291
4. Conclusion	291
THE APPLICATION OF PALAEOMAGNETISM TO EXTENSIONAL TECTONICS: A PALAEOMAGNETIC STUDY OF THE PARKER DISTRICT, BASIN AND RANGE	
PROVINCE, ARIZONA. by P.DAGLEY and J.D.A. PIPER	293
by I. DROLLET UNU J.D.A. TIFEK	293
1. Introduction	293
2. Geology and sampling	296
3. Paleomagnetic results	299
4. Discussion	305
MECHANISMS OF CENOZOIC TECTONIC ROTATION, PACIFIC NORTHWEST CONVERGENT MARGIN, U.S.A.	
by R.E. WELLS	313
•	
1. Introduction	313
2. Long-term dextral shear along the margin	317
3. Basin-Range extension	321
4. Discussion	323

•

ROTATION OF CENTRAL AND SOUTHERN ALASKA IN THE EARLY TERTIARY: OROCLINAL BENDING BY MEGAKINKING? by R. S. COE, B. R. GLOBERMAN, and G. A. THRUPP	327
1. Introduction	327
2. Paleomagnetic Evidence	328
3. Discussion.	332
4. Conclusions	339
PALEOGEOGRAPHY AND ROTATIONS OF ARCTIC ALASKA - AN UNRESOLVED	
PROBLEM.	
by D. B. STONE	343
1. Introduction	343
2. Background	349
3. Paleomagnetism	351
 Paleomagnetic data for Alaska Discussion 	353 360
5. Discussion	500
PALAEOMAGNETIC ESTIMATES OF ROTATIONS IN COMPRESSIONAL REGIMES AND POTENTIAL DISCRIMINATION BETWEEN THIN-SKINNED AND DEEP	
CRUSTAL DEFORMATION.	
by E. McCLELLAND and A. M. McCAIG	365
1. Introduction	365
2. Rotations in thin-skinned thrusting; an example from SW Dyfed, Wales.	366
Rotations in Basement thrust sheets; an example from the Axial zone, Spanish Pyrenees	370
4. Conclusions	377
	511
PALAEOMAGNETIC EVIDENCE FOR BLOCK ROTATIONS AND DISTRIBUTED DEFORMATION OF THE IBERIAN-AFRICAN PLATE BOUNDARY	
by M.L. OSETE, R. FREEMAN and R. VEGAS	381
1. Introduction	381
2. Palaeomagnetic Results	383
3. Discussion	385
FAULT BLOCK ROTATIONS IN OPHIOLITES: RESULTS OF PALAEOMAGNETIC	
STUDIES IN THE TROODOS COMPLEX, CYPRUS.	000
by S. ALLERTON	393
1. Introduction	393
2. Crustal Structure of the Troodos ophiolite	394
3. Palaeomagnetic units	395
4. Method of analysis	396

xi

xii	•
5. Extensional deformation	397
6. Strike-slip deformation	403
7. Conclusions	408
PALEOMAGNETISM IN SE ASIA: SINISTRAL SHEAR BETWEEN PHILIPPINE SEA	
PLATE AND ASIA.	4
by M. FULLER, R. HASTON and E. SCHMIDTKE.	411
1. Introduction.	411
2. Philippine Sea Plate.	411
3. Luzon, northern Philippines.	418
4. Tectonics of Philippines and Philippine Sea Plate.	428
PALAEOMAGNETIC CONSTRAINTS ON THE EARLY HISTORY OF THE MØRE- TRØNDELAG FAULT ZONE, CENTRAL NORWAY	
by T.H. TORSVIK, B.A. STURT D.M. RAMSAY A. GRØNLIE, D. ROBERTS,	
M. SMETHURST, K. ATAKAN, R. BØE and H.J. WALDERHAUG	431
M. SMEINONSI, K. AIANAN, K. DEE UM II.J. WALDENNAUU	771
1. Introduction	431
2. Regional geology sampling and magnetic fabrics	433
3. Paleomagnetic and rock-magnetic experiments	437
4. Paleomagnetic reference data	444
5. Interpretation of remanence data	444
6. Discussion	449
PALEOMAGNETICALLY OBSERVED ROTATIONS ALONG THE HIKURANGI	
MARGIN OF NEW ZEALAND	
by R.I.WALCOTT	459
1. Introduction	459
2. Plate reconstructions	461
3. The Hikurangi margin	462
4. Paleomagnetic studies on the Hikurangi margin	467
5. Mechanics of rotation	469
6. Conclusions	470
ROTATIONS ABOUT VERTICAL AXES IN PART OF THE NEW ZEALAND PLATE-	
BOUNDARY ZONE, THEORY AND OBSERVATION	
by S. LAMB	473
1. Introduction	473
2. Floating block model	474
3. New Zealand plate-boundary zone	479
4. Northern Marlborough domain	481
5. Southern Marlborough domain	485
6. Development of Marlborough domains	486
7. Conclusion	487

-

.

LEOMAGNETIC ROTATIONS IN THE COASTAL AREAS OF ECUADOR		
by C. LAJ, P. MITOUARD, P. ROPERCH, C. KISSEL, T. MOURIER, F. MEGARD	489	
1- Introduction.	489	
2. Choice of sites and sampling methods.	491	
3. The sampled regions	492	
4- Results	496	
5 - Tectonic implications of the data.	502	
6 - Discussion	504	
7 - Conclusions.	508	
LIST OF PARTICIPANTS	513	

•

.

LIST OF PARTICIPANTS

xiii

-

. .