Contents

Contributors xiii

1. Introduction: Questions of Scale
Christopher B. Field and James R. Ehleringer

I. Scaling from Ecophysiology 1
II. The Art of Scaling 2
III. Some New Dimensions 3

References 4

Part I
Integrating Spatial Patterns

2. Concepts of Scale at the Local Level
Simon A. Levin

I. Introduction 7
II. The Ecosystem as an Abstraction 7
III. There Is No Correct Scale, but There May Be Scaling Laws 11
IV. Relevance to Ecological Problems 12
V. Theories and Bases for Scaling 13
VI. Program for Research on Scaling in Terrestrial Systems 18

References 18

3. Spatial Information for Extrapolation of Canopy Processes:
Examples from FIFE
David S. Schimel, Frank W. Davis, and Timothy G. F. Kittel

I. Introduction 21
II. Experiment Overview 22
III. A Priori Stratification 23
 A. Rationale 23
 B. Initial Implementation 24
IV. Digital Elevation Model-Based a Priori Stratification 26
 A. Methods 26
 B. Analysis 27
V. Regression-Tree Stratification 28
 A. Methods 28
 B. Results 29
Part II

Leaf to Ecosystem Level Integration

4. Scaling Processes between Leaf and Canopy Levels

John M. Norman

I. Introduction 41
II. What Is Scaling and Why Do It? 42
III. Issues in Scaling from Leaf to Canopy 43
IV. Can an Investigative Paradigm from Physics Be Applied Directly to Biology? 44
V. Scaling in Fluid Dynamics 45
VI. Comprehensive Plant—Environment Models 47
 A. What Are PE Models? 48
 B. Early History of PE Models 49
 C. How Do We Approach PE Models? 50
VII. Examples of Scaling Leaf Photosynthesis to Canopy Photosynthesis 51
 A. Method 1: Scale Using Leaf Photochemical Efficiency and APAR 52
 B. Method 2: Scale Using Average Illumination and LAI 54
 C. Method 3: Consider the Canopy as One Large Horizontal Leaf 62
 D. Method 4: Stratify Canopy into Sunlit and Shaded Leaves 62
 E. Method 5: Consider Leaf Energy Balance and Environmental Gradients 63
 F. Summary 73
VIII. Summary 73
References 74

5. Scaling Water Vapor and Carbon Dioxide Exchange from Leaves to a Canopy: Rules and Tools

Dennis D. Baldocchi

I. Introduction 77
II. Literature Overview 78
III. Basic Scaling Rules 79
IV. Leaf to Canopy Scaling: Linking Transpiration and Photosynthesis with Their Microenvironment 80
 A. Evaluating the Conservation Budget Equation 82
 B. Radiative Transfer in Plant Canopies 87
 C. Surface Energy Balance 90
V. What Information Is Needed to Scale CO₂ and Water Vapor Exchange from a Leaf to a Canopy? 91
 A. Defining the Canopy 91
 B. Evaluating Leaf Scaling Parameters and Processes 93

VI. Can Information on Leaf CO₂ and Water Vapor Exchange Be Extended to the Canopy Scale? 95
 A. Homogeneous Closed Canopy: Soybeans 95
 B. Aerodynamically Rough and Complex Plant Stand: Broadleaf Forest 100

VII. Concluding Comments 106
 References 108

6. Prospects for Bottom-Up Models
 Paul G. Jarvis
 I. What Are Bottom-Up Models? 117
 II. Problems 120
 III. Top-Down Models: An Alternative Approach 121
 IV. Bottom-Up Models and Scaling 123
 V. Conclusions 124
 References 125

7. Scaling Ecophysiology from the Plant to the Ecosystem: A Conceptual Framework
 James F. Reynolds, David W. Hilbert, and Paul R. Kemp
 I. Introduction 127
 II. Role of Modeling 128
 III. Scaling Issues and Hierarchy Theory 129
 A. Scaling and Aggregation Problems 129
 B. Role of Mechanistic Models 131
 C. Hierarchical Framework for Model Aggregation 132
 IV. Examples of Model Aggregation 134
 A. Effects of Elevated CO₂ and Soil Nitrogen on Stand Dynamics 134
 B. Danger of Direct Scaling: Transposition of Scale 136
 V. Summary 138
 References 139

8. Generalization of a Forest Ecosystem Process Model for Other Biomes, BIOME-BGC, and an Application for Global-Scale Models
 Steven W. Running and E. Raymond Hunt, Jr.
 I. Introduction 141
 II. Lessons Learned in the Evolution of FOREST-BGC and RESSys 142
 A. Precursors of FOREST-BGC and RESSys 142
 B. New Applications of FOREST-BGC and RESSys 145
III. BIOME-BGC Development 146
 A. Physiology across Biomes 146
 B. Parameter Changes Required for BIOME-BGC 148
 C. BIOME-BGC Simulation Results 150

IV. Global Scale Application Using BIOME-BGC 152
 A. Remote Sensing of Net Primary Production 152
 B. Effect of Life-Form on ϵ_c 153
 C. Effect of Climate on ϵ_c 154

V. Conclusions 155
References 156

9. How Ecophysiologists Can Help Scale from Leaves to Landscapes

Richard H. Waring

I. Role of Ecophysiologists 159
II. Promising Research Areas 160
 A. Assessing the Availability and Acquisition of Resources 160
 B. Identifying the Origin of Resources 161
 C. Identifying the Fate of Resources 161
 D. Animal–Host Plant Interactions 162

III. Landscape Ecology 162
IV. Challenges for the Future 163
References 164

Part III

Global Constraints and Regional Processes

10. Global Dynamics and Ecosystem Processes: Scaling Up or Scaling Down?

Peter M. Vitousek

I. Introduction 169
II. From Physiology to Ecosystem 170
III. From Ecosystem to Global Scale 172
IV. Global Measurements to Ecosystem Mechanisms 174
V. Conclusions 176
References 176

11. Observational Strategy for Assessing the Role of Terrestrial Ecosystems in the Global Carbon Cycle: Scaling Down to Regional Levels

Pieter P. Tans

I. Introduction 179
II. Atmospheric Concentration Gradients and Transport Modeling 180

<table>
<thead>
<tr>
<th>Page</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>146</td>
<td>III. BIOME-BGC Development</td>
</tr>
<tr>
<td>146</td>
<td>A. Physiology across Biomes</td>
</tr>
<tr>
<td>148</td>
<td>B. Parameter Changes Required for BIOME-BGC</td>
</tr>
<tr>
<td>150</td>
<td>C. BIOME-BGC Simulation Results</td>
</tr>
<tr>
<td>152</td>
<td>IV. Global Scale Application Using BIOME-BGC</td>
</tr>
<tr>
<td>152</td>
<td>A. Remote Sensing of Net Primary Production</td>
</tr>
<tr>
<td>153</td>
<td>B. Effect of Life-Form on ϵ_c</td>
</tr>
<tr>
<td>154</td>
<td>C. Effect of Climate on ϵ_c</td>
</tr>
<tr>
<td>155</td>
<td>V. Conclusions</td>
</tr>
<tr>
<td>156</td>
<td>References</td>
</tr>
<tr>
<td>159</td>
<td>9. How Ecophysiologists Can Help Scale from Leaves to Landscapes</td>
</tr>
<tr>
<td>160</td>
<td>Richard H. Waring</td>
</tr>
<tr>
<td>160</td>
<td>I. Role of Ecophysiologists</td>
</tr>
<tr>
<td>160</td>
<td>II. Promising Research Areas</td>
</tr>
<tr>
<td>160</td>
<td>A. Assessing the Availability and Acquisition of Resources</td>
</tr>
<tr>
<td>161</td>
<td>B. Identifying the Origin of Resources</td>
</tr>
<tr>
<td>161</td>
<td>C. Identifying the Fate of Resources</td>
</tr>
<tr>
<td>162</td>
<td>D. Animal–Host Plant Interactions</td>
</tr>
<tr>
<td>162</td>
<td>III. Landscape Ecology</td>
</tr>
<tr>
<td>163</td>
<td>IV. Challenges for the Future</td>
</tr>
<tr>
<td>164</td>
<td>References</td>
</tr>
<tr>
<td>169</td>
<td>10. Global Dynamics and Ecosystem Processes: Scaling Up or Scaling Down?</td>
</tr>
<tr>
<td>170</td>
<td>Peter M. Vitousek</td>
</tr>
<tr>
<td>172</td>
<td>I. Introduction</td>
</tr>
<tr>
<td>172</td>
<td>II. From Physiology to Ecosystem</td>
</tr>
<tr>
<td>174</td>
<td>III. From Ecosystem to Global Scale</td>
</tr>
<tr>
<td>174</td>
<td>IV. Global Measurements to Ecosystem Mechanisms</td>
</tr>
<tr>
<td>176</td>
<td>V. Conclusions</td>
</tr>
<tr>
<td>176</td>
<td>References</td>
</tr>
<tr>
<td>179</td>
<td>11. Observational Strategy for Assessing the Role of Terrestrial Ecosystems in the Global Carbon Cycle: Scaling Down to Regional Levels</td>
</tr>
<tr>
<td>180</td>
<td>Pieter P. Tans</td>
</tr>
<tr>
<td>180</td>
<td>I. Introduction</td>
</tr>
<tr>
<td></td>
<td>II. Atmospheric Concentration Gradients and Transport Modeling</td>
</tr>
</tbody>
</table>
III. General Requirements for Measurements 184
IV. Methods for Monitoring the Carbon Cycle on the Continents 185
 A. High Precision Concentration Measurements 186
 B. Flux Measurement through Eddy Correlation 187
 C. Weekly Vertical Profile Determination 188
 D. Studies of Land Use, Nutrient Budgets, and Carbon Allocation 188
V. Summary 188
References 189

12. Forests in the Global Carbon Balance: From Stand to Region
 Paul G. Jarvis and Roddy C. Dewar
I. Introduction 191
II. Carbon Balance Concept 193
 A. Anthropogenic Perturbation 193
 B. Consideration of Temporal and Spatial Scale 195
 C. Changes in Land Use and Productivity 196
III. Methodology for Determining Enhanced Sources and Sinks 197
 A. Inverse Modeling 197
 B. Forward Modeling 198
 C. Flux Measurements 199
 D. Stock Taking 201
IV. Current Enhanced Sources 202
 A. Fossil Fuels 202
 B. Burning Vegetation 202
 C. Tropical Deforestation 202
 D. Temperate and Boreal Deforestation 204
V. Current Enhanced Sinks 204
 A. Increase in the Atmospheric Concentration 204
 B. Controversial Ocean Sink and the Tans Hypothesis 205
 C. Terrestrial Biotic Sinks 207
VI. Historical Trend of the Global Terrestrial Sink 208
VII. Carbon Dioxide Fertilization 209
 A. Hypothesis 209
 B. Evidence 211
 C. Process-Based Terrestrial Ecosystem Models 211
VIII. Moving Forward 212
 A. Database Improvement 212
 B. Changes in Carbon Stocks 213
 C. Carbon Dioxide Flux Measurements 213
 D. Coherent Suite of Models over a Range of Scales 213
IX. Conclusions 217
References 218

13. Prospects for Scaling
 Martyn M. Caldwell, Pamela A. Matson, Carol Wessman, and John Gamon
I. Introduction 223
Contents

II. Approaches and Guidelines 224
 A. Bottom-Up and Top-Down Models 224
 B. Guidelines for Scaling 225
 C. New Tools 227
 D. Structuring Our Science 228

References 229

Part IV
Functional Units in Ecology

Fakhri A. Bazzaz

I. Introduction 233
II. Individual Plants as Members of Populations, Communities, and Ecosystems 234
III. Global Change, Resource Augmentation, and the Response of Individuals and Populations: Are There General Patterns? 238
IV. Models as Tools for Scaling: Single Individual and Single Species Models without Competition 241
V. Models with Competition and among Neighbors: A Step closer to Natural Ecosystems 242
VI. Factors That Can Compromise the Simplicity of Models 245
 A. Environmental Heterogeneity 246
 B. Incongruent Availability of Resources 247
 C. Phenotypic Variation 247

References 252

15. Scaling at the Population Level: Effects of Species Composition and Population Structure
James S. Clark

I. Introduction 255
II. When to Consider the Population Level in the Context of Scaling 257
III. Patchiness and the Gap Paradigm 260
IV. Why Simplify? 263
V. How to Simplify 263
 A. Species Composition 263
 B. Population Structure 264
VI. Spatial and Temporal Dependencies 269
 A. Spatial Dependence 272
 B. Temporal Dependence 274
VII. Future Directions 280

References 281
16. Functional Role of Growth Forms in Ecosystem and Global Processes
F. Stuart Chapin III

I. Introduction 287
II. Physiological Basis of Adaptive Strategies 288
 A. RGR and Suites of Physiological Traits 288
 B. Trade-offs with Growth Rate 290
III. Ecological Controls over Adaptive Strategies 292
IV. Ecosystem Consequences of Growth Forms 294
 A. Individuals versus Ecosystems 294
 B. Energy and Water Exchange 296
 C. Carbon Flux 300
 D. Nutrient Cycling 301
 E. Trophic Transfer 302
 F. Sensitivity to Disturbance 302
 G. Community Change 303
V. Growth Form—Ecosystem Feedbacks 303
VI. Remote Sensing of Growth Forms and Ecosystem Function 305
VII. Conclusions 306
References 308

17. Grouping Plants by Their Form—Function Characteristics as an Avenue for Simplification in Scaling between Leaves and Landscapes
Todd E. Dawson and F. Stuart Chapin III

I. Introduction 313
II. Form—Function Relationship in Plants 314
III. Grouping Rationale 316
IV. Grouping Criteria 316
V. Concluding Remarks 318
References 319

Part V
Integrating Technologies for Scaling

18. Applications of Stable Isotopes to Scaling Biospheric Photosynthetic Activities
Dan Yakir, Joseph A. Berry, Larry J. Giles, C. Barry Osmond, and Richard B. Thomas

I. Introduction 323
II. Sources: The Importance of Isotopic Composition of Water in the Metabolic Compartments of Leaves 324
 A. Using CO₂ as a Probe 325
 B. Using Photosynthetic O₂ as a Probe 327
III. Gradients: The Interpretation of Gradients in Isotopic Composition and Their Value as Integrators of Photosynthetic Fluxes 329

IV. Partitioning: Evaluating Photosynthetic Pathways within Ecosystems, Carbon Allocation below Ground, and Integration with Nitrogen Fixation 331

V. Summary 334

References 335

Susan L. Ustin, Milton O. Smith, and John B. Adams

I. Introduction 339
 A. Current and Future Earth Observing Satellites 341

II. Relevant Ecological Measurements 342

III. Current Approaches to Remote Sensing 344
 A. Spectral Mixture Analysis of Images 345
 B. Ecological Measurements from Remote Sensing Data 345
 C. Quantifying Scene Components 347
 D. Identifying Major Scene Components 350
 E. Error Analysis 350
 F. Identifying Minor Scene Components 351

IV. Conclusions 352

V. Summary 354

References 355

20. New Technologies for Physiological Ecology

David S. Schimel

I. Introduction 359

II. Discussion 359
 A. Flux Measurements 359
 B. Isotope Techniques 361
 C. Remote Sensing 363

References 365

Index 367