Electrochemical

Systems

John S. Newman University of California

Prentice-Hall, Inc. Englewood Cliffs, N.J.

Contents

1 Introduction

1. Thermodynamics, electrode kinetics, and transport processes 1

1

29

- 2. Rotating cylinders 2
- 3. Electrolytic conduction 3
- 4. Fluid flow 6
- 5. The diffusion layer 9
- 6. Concentration cells 12
- 7. Concentration overpotential 13
- 8. Surface overpotential 17
- 9. The cell potential 20
- 10. Supporting electrolyte 21
- 11. Free convection 23

Part A Thermodynamics of Electrochemical Cells 27

2 Thermodynamics in terms of electrochemical potentials

- Phase equilibrium 29
 Chemical potential and electrochemical potential 31
- 14. The definition of some thermodynamic functions 33

66

78

vi			Contents
	15. 16. 17. 18. 19. 20. 21.	Cell with solution of uniform concentration 39 Transport processes in junction regions 42 Cell with a single electrolyte of varying concentration Cell with two electrolytes, one of nearly uniform- concentration 47 Cell with two electrolytes, both of varying concentration 51 Standard cell potential and activity coefficients 52 Pressure dependence of activity coefficients 59	44
3	The elec	tric potential	66
	22. 23. 24. 25. 26.	The electrostatic potential 66 Intermolecular forces 69 Outer and inner potentials 72 Potentials of reference electrodes 73 The electric potential in thermodynamics 74	
4	Activity	coefficients	78
	 27. 28. 29. 30. 31. 32. 33. 	Ionic distributions in dilute solutions78Electrical contribution to the free energy80Shortcomings of the Debye-Hückel model85Binary solutions88Multicomponent solutions91Measurement of activity coefficients95Weak electrolytes98	
5	Referenc	e electrodes	107

5 Reference electrodes

34.	Criteria for reference electrodes 108
35.	Experimental factors affecting the selection of
	reference electrodes 110
36.	The hydrogen electrode 111
37.	The calomel electrode and other mercury-mercurous salt electrodes 114
38.	The mercury-mercuric oxide electrode 117
39.	Silver-silver halide electrodes 117
40.	Potentials relative to a given reference electrode [19]

Contents

6 Potentials of cells with junctions

124

}			
	41.	The Nernst equation 125	
	42.	Types of liquid junctions 126	
	43.	Formulas for liquid-junction potentials 127	
	44.	Determination of concentration profiles 128	
	45.	Numerical results 129	
	46.	Cells with liquid junction 134	<.
	47.	Error in the Nernst equation 135	
1	48.	Potentials across membranes 137	
Pa	rt B Elec	ctrode Kinetics and Other Interfacial Phenomena	139
	~	· · · · · · · · · · · · · · · · · · ·	
1	Structur	e of the electric double layer	140
	49.	Qualitative description of double layers 140	
	· 50.	The Gibbs adsorption isotherm 146	
	51.	The Lippmann equation 149	
	52.	The diffuse part of the double layer 152	
	53.	Capacity of the double layer in the absence of	
		specific adsorption 161.	
	54.	Specific adsorption at an electrode-solution interface	162
8	Electroa	le kinetics	167
	55	Heterogeneous electrode reactions 167	
	56.	Dependence of current density on surface overpotential 169	
	57.	Models for electrode kinetics 171	•
	58.	Effect of double-layer structure 179	
	59.	The oxygen electrode 181	
	60.	Methods of measurement 182	
	61.	Simultaneous reactions 184	
9	Electrok	cinetic phenomena	190
	.62.	Discontinuous velocity at an interface 190	
	63.	Electro-osmosis and the streaming potential 193	

vii

	64. 65.	Electrophoresis 201 Sedimentation potential 203	
10	Electroc	capillary phenomena	208
	6 6.	Dynamics of interfaces 209	
	67.	Electrocapillary motion of mercury drops 210	
	68.	Sedimentation potentials for falling mercury drops	211
Part	C Tran	sport Processes in Electrolytic Solutions	215
11	Infinite	ly dilute solutions	217
	69.	Transport laws 217	
	70.	Conductivity, diffusion potentials, and transference numbers 221	
	71.	Conservation of charge 222	
	72.	The binary electrolyte 223	
	73.	Supporting electrolyte 225	
	74.	Multicomponent diffusion by elimination of the electric field 228	
	75.	Mobilities and diffusion coefficients 228	
	76.	Electroneutrality and Laplace's equation 231	
	77.	Moderately dilute solutions 234	
12	Concen	trated solutions	239
	78	Transport laws 239	
	79.	The binary electrolyte 241	
	80.	Reference velocities 244	
	81.	The potential 244	
	82.	Connection with dilute-solution theory 245	
	83.	Multicomponent transport 247	
	84.	Liquid-junction potentials 249	
13	Therma	al effects	254
	85.	Thermal diffusion 254	
	86.	Heat generation, conservation, and transfer 256	

×

٠.

÷

Contents

Contents

11

ł

ix

	87. 88.	Heat generation at an interface 258 Thermogalvanic cells 260	
14	Transpo	ort properties	266
	89. 90. 91. 92.	Infinitely dilute solutions266Solutions of a single salt266Multicomponent solutions271Integral diffusion coefficients for mass transfer272	
15	Fluid m	nechanics	276
	93. 94. 95. 96. 97. 98. 99.	Mass and momentum balances276Stress in a Newtonian fluid278Boundary conditions278Fluid flow to a rotating disk280Magnitude of electrical forces284Turbulent flow287Mass transfer in turbulent flow292	-
Part	D Curr Elec	rent Distribution and Mass Transfer in trochemical Systems	297
16	Fundan	nental equations	301
	100. 101.	Transport in dilute solutions 301 Electrode kinetics 302	
17	Convec	tive-transport problems	305
	102. 103. 104. 105. 106.	Simplifications for convective transport 305 The rotating disk 307 The Graetz problem 311 The annulus 316 Two-dimensional diffusion layers in laminar forced convection 320	

	107.	Axisymmetric diffusion layers in laminar	
	108	A flat plate in a free stream 323	
	100.	Rotating cylinders 324	
	102.	Growing mercury drops 326	
	111	Free convection 327	
	111.	Combined free and formed convection 220	
	112.	Limitations of surface resations 220	
	113.	Limitations of surface reactions 550	
	114.	Binary and concentrated solutions 551	
18	Applicat	ions of potential theory	340
	115.	Simplifications for potential-theory problems 340	
	116.	Primary current distribution 341	
	117.	Secondary current distribution 345	
	118.	Numerical solution by finite differences 351	
19	Effect of	^c migration on limiting currents	35 3
	119.	Analysis 355	
	120.	Correction factors for limiting currents 357	
	121.	Concentration variation of supporting electrolyte 359	
	122.	The rôle of bisulfate ions 364	
	123.	Paradoxes with supporting electrolyte 368	
	124.	Limiting currents for free convection 373	
20	Concenti	ration overpotential	82
	105	Definition 202	
	125.	Definition 382	
	120.	Binary electrolyte 384	
	127.	Supporting electrolyte 385	
	128.	Calculated values 380	
21	Currents	below the limiting current 3	90
	⁻ 129.	The bulk medium 392	
	130.	The diffusion layers 393	

1

1		÷.,	
1			i –
1			i.
	1.1		
C	on'	tò	hte
Y	01	ιç	1113
	1.1		

1

	131. 132.	Boundary conditions and method of solution 'Results for the rotating disk 397	395	
Apr	pendix			405
A.	Partial r	nolar volumes		407
В.	Vectors	and tensors		409
C.	Numeric Equation	cal Solution of Coupled, Ordinary Differential		414
Inde	ex			427