Remote Sensing for Ecology and Conservation

A Handbook of Techniques

Ned Horning,
Julie A. Robinson,
Eleanor J. Sterling,
Woody Turner,
and
Sacha Spector

Contents

Pr	reface	X
Ac	cronyms List	xvii
Ac	cknowledgments	xxi
ΑŁ	bbreviations	xxii
P	art I Getting started: remote sensing fundamentals	
1	Introduction: Why ecologists and conservation	
	biologists use remote sensing	3
	1.1 Our aims and objectives	3
	1.2 Why remote sensing tools are important	4
	1.2.1 Observation	4
	1.2.2 Analysis and measurement	6
	1.2.3 Mapping	8
	1.2.4 Monitoring over time and space	8
	1.2.5 Decision support	9
	1.3 Organization of the book	9
	1.3.1 Getting started: remote sensing fundamentals	9
	1.3.2 Ecological systems and processes	10
	1.3.3 Putting it into practice: conservation applications	12
	1.3.4 Appendices	14
	1.4 Remote sensing: a technology in development	14
2	When to use remote sensing	15
	2.1 Physical and practical limitations of remotely sensed imagery	15
	2.1.1 Resolution	16
	2.1.2 Working at different scales: practical and conceptual	
	limitations	23
	2.1.3 Using remote sensing to study social phenomena	2.5
	2.2 Accuracy	25
	2.2.1 Types of error	25
	2.2.2 Defining acceptable accuracy	27
	2.2.3 Measuring and reporting accuracy	28
	2.2.4 Understanding accuracy statistics	30
	2.2.5 Trends in accuracy assessment	31

	2.3	Assessing in-house capabilities (institutional limitations)	32
		2.3.1 Doing work in-house or contracting out	33
		2.3.2 Training	3 ·3
		2.3.3 Finding a good remote sensing consultant	35
	2.4	Summary	35
3	Wo	rking with images	37
	3.1	Choosing the right type of imagery	39
		3.1.1 Multispectral imaging	39
		3.1.2 Spatial resolution and scale	40
		3.1.3 Temporal options: seasonality and frequency of acquisitions	46
		3.1.4 Requesting imagery	46
		3.1.5 Making the decision	47
	3.2	Software options	48
		3.2.1 Graphics software	48
		3.2.2 GIS software	48
		3.2.3 Specialized remote sensing software	49
		3.2.4 Mathematical and visualization software	49
		3.2.5 Deciding which software to use	49
	3.3	Visualizing the data	50
		3.3.1 Combining bands to make a color composite	50
		3.3.2 Image enhancements	50
		3.3.3 Image sharpening with a panchromatic band	53
		3.3.4 Three-dimensional viewing	57
	3.4	Additional processing	59
		3.4.1 Radiometric processing	59
		3.4.2 Reflectance: the holy grail of remote sensing	60
		3.4.3 Geometric processing	62
	3.5	Image interpretation and classification	64
		3.5.1 Visual interpretation	65
		3.5.2 Image classification	67
		3.5.3 Accuracy assessment	78
	3.6	Summary	78
P	art I	I Ecological systems and processes	
4	Me	easuring and monitoring land cover, land use,	
	an	d vegetation characteristics	81
	4.1	Land cover classification	81

			Content	s vii
		4.1.1	Land cover versus land use	81
		4.1.2	Options for output products	82
		4.1.3	Comparing land cover maps with image photoproducts	83
		4.1.4	Getting started	84
		4.1.5	Requirements for creating a land cover classification map	84
		4.1.6	Define the study area	85
		4.1.7	Defining a classification scheme	86
		4.1.8	Selecting imagery	88
		4.1.9	Image preprocessing	88
		4.1.10	Ancillary data	90
		4.1.11	Classification methods	90
		4.1.12	Field validation	91
		4.1.13	Accuracy assessment	91
		4.1.14	Using the completed map	91
	4.2	Monitor	ing land cover change	92
		4.2.1	Reasons for mapping land cover change	92
		4.2.2	Monitoring changes in forest cover	93
		4.2.3	Visual methods for monitoring land cover change	93
		4.2.4	Selecting a change detection method	95
		4.2.5	Dealing with different data sources	101
		4.2.6	Data normalization	103
		4.2.7	Validating change detection results	104
		4.2.8	Planning a land cover change project	104
	4.3	Vegetat	ion characteristics	107
		4.3.1	Using vegetation indices	108
		4.3.2	Principle components analysis (PCA)	111
		4.3.3	Other MODIS vegetation data products	112
		4.3.4	Using active sensors for vegetation mapping	112
	4.4	Summar	у	119
5	Tei	rain ar	nd soils	120
•		Elevatio		120
	ا.ر	5.1.1	What is elevation?	121
		5.1.2	Representing three-dimensional surfaces	123
		5.1.2	Acquiring elevation data	126
		5.1.3 5.1.4	DEM preprocessing	128
		5.1.5	Products derived from DEMs	130
		5.1.6	Using DEMs to improve mapping accuracy	131
		5.1.7	Three-dimensional analysis and visualization	135
		J.1./	ттес-итепзинагинатузгэ ини үтэйиндагин	123

	5.2 Geology and soils	136
	5.2.1 Geology	137
	5.2.2 Soils	137
	5.3 Summary	138
6	Marine and coastal environments	140
	6.1 Separating the surface, water column, and bottom	141
	6.1.1 Water types	143
	6.1.2 Water column correction	147
	6.1.3 Bathymetry	150
	6.1.4 Top-down versus bottom-up approaches	152
	6.2 Water properties	154
	6.2.1 Chlorophyll	156
	6.2.2 Primary productivity	15 <i>7</i>
	6.2.3 Harmful algal blooms	158
	6.2.4 Sea surface temperature (SST)	160
	6.2.5 Predicting coral bleaching	161
	6.2.6 Salinity	162
	6.2.7 Ocean circulation	164
	6.3 Shallow benthic environments	165
	6.3.1 Coral reefs	165
	6.3.2 Seagrasses and kelp	170
	6.4 Summary	173
7	Wetlands—estuaries, inland wetlands, and freshwater	r
	lakes	174
	7.1 Mangroves	179
	7.2 Salt and freshwater marshes	181
	7.2.1 Lidar mapping of wetland elevation	182
	7.2.2 Lidar mapping of wetland vegetation	184
	7.2.3 Spectral characteristics used in mapping of marshes	185
	7.2.4 Combining lidar and multispectral data	188
	7.2.5 Radar mapping of wetlands	189
	7.2.6 Using radar to map hurricane-related flooding	190
	7.3 Shoreline mapping of lakes and rivers	192
	7.4 Water quality mapping and monitoring	192
	7.4.1 Hyperspectral remote sensing of water quality	192
	7.4.2 Thermal mapping	193
	7.5 Summary	194

	8.2	Clouds	200
		8.2.1 Clouds and climate	201
		8.2.2 How cloud remote sensing works	201
	8.3	Aerosols	204
		8.3.1 Aerosols and climate	205
		8.3.2 Aerosols and biological productivity	209
		8.3.3 How aerosol remote sensing works	209
	8.4	Precipitation	210
		8.4.1 The basics of precipitation	211
		8.4.2 Ground-based radar	211
		8.4.3 How remote sensing of precipitation works	212
		8.4.4 A caveat regarding precipitation products	216
		8.4.5 Global precipitation climatology product	218
		8.4.6 Feedbacks between vegetation and precipitation	219
	8.5	Winds	221
		8.5.1 The basics of global winds	224
		8.5.2 How remote sensing of wind works	226
		8.5.3 Winds and ocean productivity	228
	8.6	Temperature and the radiation budget	230
		8.6.1 Temperature and vegetation	230
		8.6.2 Temperature and species	231
		8.6.3 The basics of Earth's radiation budget and temperature	232
		8.6.4 Remote sensing of Earth's radiation budget and temperature	233
		8.6.5 Long-term temperature data sets	237
	8.7	Global climate modeling applications to ecology and	
		conservation	238
	8.8	Summary and a potential way forward through ecological	
		forecasting	241
9	Dis	turbances: fires and floods	242
	9.1	Fires and logging in the humid tropics	242
		9.1.1 Tropical fires and biodiversity	246
		9.1.2 Tropical fires and the atmosphere	246
	9.2	Remote sensing of fire and its aftermath	247
		9.2.1 Prefire assessment	247
		9.2.2 Fire detection and monitoring	247

8 Atmosphere and climate

8.1 Climate and the physical environment

9	9.3	Remote sensing of floods	254
		9.3.1 Passive and active remote sensing of floods	255
ç	9.4	Other disturbance mechanisms	258
		9.4.1 Volcanoes	258
		9.4.2 Dams	260
Ġ	9.5	Summary	260
Part I	III P	utting remote sensing into practice: conservation	on
	a	nd ecology applications	
10 L	ands	scape fragmentation	263
10	0.1	Fragmentation basics	264
10	0.2	Fragmentation metrics	267
10	0.3	Issues in processing fragmentation data	270
10	0.4	Composition metrics	274
10	0.5	Configuration, edge, and connectivity metrics	276
10	0.6	Fractal dimensions	279
10	0.7	Connectivity metrics	280
10	8.0	Route network metrics	281
10	0.9	Fragmentation analyses at different scales using	
		remote sensing	283
10	0.10	Summary	284
11 H	łuma	an interfaces and urban change	285
1	1.1	Importance of remotely sensed data for studying urban	
		interfaces	286
1	1.2	Data sources for urban classification	287
1	1.3	Data analysis techniques	289
		11.3.1 Image rectification	289
		11.3.2 Preprocessing	292
		11.3.3 Change detection algorithms	293
1	1.4	Accuracy measurements for urban change	296
1	1.5	Texture analysis	298
1	1.6	Complex urban land cover analyses	301

9.2.3 Postfire assessment

9.2.4 Some satellite fire products

252

253

		Content	ts xi
	11.7	Urban heat islands	305
	11.8	Summary	306
12	Prof	tected area design and monitoring	307
	12.1	Planning for protected areas	309
		12.1.1 Designing individual protected areas 12.1.2 Designing networks of protected areas	309 310
	12.2	Managing and monitoring protected areas	314
	12.3	Integrating remotely sensed data and social and economic considerations into protected area planning and monitoring	316
	12.4	Global-scale monitoring and resources for remotely sensed data and protected areas	317
	12.5	Summary and cautions about the use of remotely sensed	
		data for protected area design and monitoring	319
13	Inte	grating field data	321
	13.1	Integrating field data and remotely sensed data	322
		13.1.1 Remote sensing versus field methods	322
		13.1.2 Handheld sensors: an intersection of remote sensing	
		and field methods	323
		13.1.3 Ground-level field photography	325
		13.1.4 Telemetry	328
	13.2	Summary	332
14	Link	ing remote sensing with modeling	333
	14.1	What are models?	335
	14.2	How do I start? Steps to developing models	336
		14.2.1 Establish problem statement	336
		14.2.2 Define your model system's boundaries	337
		14.2.3 Define your modeling approach	338
		14.2.4 Identify model variables	339
		14.2.5 Test and validate your model	342
	14.3	What remote sensing products are commonly used in	
		modeling?	343
		14.3.1 Climate	344
		14.3.2 Terrain and soils	345
		14.3.3 Land cover	346
		14.3.4 Land use	347

14.3.5 Landscape pattern descriptors	347
14.4 Summary	349
15 Global conservation	350
15.1 Remote sensing and the road to a global ecology	350
15.2 Remote sensing and global conservation	357
15.2.1 Global priority setting for conservation	358
15.2.2 Monitoring changes on earth's surface	360
15.2.3 Ecological forecasting	361
15.3 A look ahead	361
15.4 Summary	363
Part IV Appendices	
Appendix 1 The electromagnetic spectrum	367
Appendix 2 Image-processing software	370
A2.1 Graphics software	370
A2.1.1 Proprietary	370
A2.1.2 Open source	371
A2.2 Geographic information system (GIS) software	371
A2.2.1 Proprietary	371
A2.2.2 Open source	371
A2.3 Specialized remote sensing software	372
A2.3.1 Proprietary	372
A2.3.2 Open source	373
A2.4 Numerical analysis software	373
A2.4.1 Proprietary	373
A2.4.2 Open source	374
Appendix 3 Open source software	375
A3.1 What is open source software?	375
A3.2 Where does open source software fit in?	376
A3.3 So, how can you help?	376
A3.4 What is out there and where can I get it?	376

	•	Contents xiii
Appendix 4	Satellites and sensors	377
	A4.1 Optical	377
	A4.2 Radar	381
	A4.3 Free remotely sensed data archives	382
Appendix 5	Visual interpretation	384
	A5.1 What do you need to interpret images?	384
	A5.2 Different levels of interpretation	385
	A5.3 The elements of image interpretation	387
	A5.3.1 Color and tone	387
	A5.3.2 Size and shape	389
	A5.3.3 Texture and pattern	389
	A5.3.4 Shadows	391
	A5.3.5 Relative and absolute location	392
	A5.3.6 Time	393
	A5.4 Practice, practice, practice	395
Appendix 6	Systems for observing climate and	
	atmospheric phenomena	396
	A6.1 Clouds	396
	A6.2 Aerosols	404
	A6.3 Precipitation	414
	A6.4 Temperature	415
References		416
Index		451