Stromatolites: Interaction of Microbes with Sediments

Edited by

Vinod C. Tewari Wadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India

and

Joseph Seckbach Hebrew University of Jerusalem, Israel

TABLE OF CONTENTS

Introduction to Stromatolites/Seckbach Joseph	ix	
Foreword/ Oren Aharon	xi	
List of Authors and Their Addresses	xix	
Acknowledgements	xxix	

PART 1: ARCHAEAN: PROTEROZOIC STROMATOLITES AND MICROBIOTA

Proterozoic Stromatolites of the Itaiacoca Group,	
Southeast Brazil [Filho, W.S. and Fairchild, T.R.]	3
Meso-Neoproterozoic Stromatolites from the Indravati	
and Chhattisgarh Basins, Central India [Guhey, R. et al.]	21
Stromatolites and Cyanobacterial Mats in Peritidal	
Evaporative Environments in the Neoproterozoic	
of Bas-Congo (Democratic Republic of Congo)	
and South Gabon [Préat, A.R. et al.]	· 43
Microbiota and Microbial Mats within Ancient	
Stromatolites in South China [Ruiji C. and Leiming, N.]	65
Morphological Changes in Microscopic-Megascopic Life	
and Stromatolites Recorded During Late	
Palaeoproterozoic-Neoproterozoic Transition:	
The Vindhyan Supergroup, India	
[Srivastava, P and Tewari, V.C.]	87
Farrel Quartzite Microfossils in the Goldsworthy	
Greenstone Belt, Pilbara Craton,	
Western Australia Additional Evidence for a Diverse	
and Evolved Biota on the Archean Earth [Sugitani et al.]	115
Ediacaran Krol Carbonates of the Lesser Himalaya,	
India: Stromatolitic Facies, Depositional Environment	
and Diagenesis [Tewari, V.C. and Tucker, M.E.]	133

PART 2: PHANEROZOIC STROMATOLITES

Aprian to Cenomanian Deeper-water matar	
Stromatolites from the Northern	
Tethyan Margin [Föllmi, K. et al.]1	59
Phosphatic Microbialites in the Triassic	
Phosphogenic Facies of Svalbard [Krajewski, K.] 1	87
Microbialites in the Middle–Upper Jurassic Ammonitico	
Rosso of the Southern Alps (Italy)	
[Massari, F and Westphal, H.] 2	223
Microbialites as Markers of Biotic and Abiotic Events	
in the Karst District, Slovenia and Italy [Tunis, G. et al.] 2	251
Lower Cretaceous Stromatolites in Far East Asia:	
Examples in Japan and Korea	
[Yamamoto, A. et al.]	273

PART 3:

MODERN STROMATOLITES (MARINE, LACUSTRINE, HOTSPRINGS)

Modern Marine Stromatolitic Structures:	
The Sediment Dilemma [Browne, K.]	291
Are Cyanobacterial Mats Precursors of Stromatolites	
[Chacón, E., et al.]	313
Living Stromatolites of Shark Bay, Western Australia:	
Microbial Inhabitants [Goh, F.]	343
Character, Analysis, and Preservation of Biogenicity	
in Terrestrial Siliceous Stromatolites	
from Geothermal Settings	
[Handley, K. and Campbell, K.A.]	359
Microbial Diversity in Modern Stromatolites	
[Foster, J.S. and Green, S.J.]	383
Microbialites and Sediments: A 2-Year Record	
of Burial and Exposure of Stromatolites	
and Thrombolites at Highborne	
Cay Bahamas [Reid, R.P. et al.]	407
Modern Stromatolite Ecosystems at Alkaline	
and Hypersaline High-Altitude Lakes	
in the Argentinean Puna [Farías, M.E. et al.]	427

PART 4: MODERN INSTRUMENTAL TECHNIQUES FOR THE STUDY OF STROMATOLITES AND MICROBIOTA

Micro-FTIR Spectroscopic Imaging of ~1,900	
Ma Stromatolitic Chert [Igisu, M. et al.]	445
Elemental and Isotopic Analysis by NanoSIMS:	
Insights for the Study of Stromatolites and Early	
Life on Earth [Kilburn, M. R. and Wacey, D.]	463
Stromatolites, Organic Walled Microorganisms,	
Laser Raman Spectroscopy, and Confocal Laser	
Scanning Microscopy of the Meso-Neoproterozoic	
Buxa Formation, Ranjit Window,	
Sikkim Lesser Himalaya, NE India [Tewari, V.C.]	495

PART 5:

GEOCHEMISTRY AND GEOMICROBIOLOGY OF STROMATOLITES AND MICROBIOTA

Petrology, Elemental and Isotope Geochemistry, and	
Geomicrobiology of Carbonate Infillings and Biofilms	
Lining Cracks Below the Neoproterozoic (Sturtian) Cap	
Carbonate in the Mirbat Inlier, Southernmost	
Oman [Brookfield, M. E. et al.]	525
Cave Geomicrobiology in India:	
Status and Prospects [Baskar S. et al.]	541
The Role of Sulfate Reduction in Stromatolites	
and Microbial Mats: Ancient	
and Modern Perspectives [Dillon, J.]	571
Carbonate Sediments Microbially Induced by Anaerobic	
Oxidation of Methane in Hydrocarbon-Seeps	
[Jenkins, R.G. and Hikida, Y.]	591
Biostratigraphy, Sedimentation and Chemostratigraphy	
of the Tertiary Neotethys Sediments from	
the NE Himalaya, India [Lokho, K and Tewari, V.C.]	607
Evidence of Microbial Biomineralization in Modern	
and Ancient Stromatolites [Perri, E. and Spadafora, A.]	631
Possible Fe Isotope Fractionation During	
Microbiological Processing in Ancient and Modern	
Marine Environments [Préat, A.R. et al.]	651
New Representations on the Nature of Stromatolites	
[Sumina, E.L. and Sumin, D.L.]	675
Sulfur Isotopes in Stromatolites [Strauss, H.]	687

TABLE OF CONTENTS

PART 6: ASTROBIOLOGY

٠

705
723

PART 7: SUMMARY, CONCLUSIONS AND FUTURE PROSPECTS

Summary, Conclusions, and Future Prospects	
[Seckbach, J. and Tewari, V.C.]	739
Author Index	743
Subject Index	745

.