THERMOELASTICITY

by

WITOLD NOWACKI

Translated by

HENRYK ZORSKI

Second edition
Revised and enlarged

PERGAMON PRESS
OXFORD • NEW YORK • TORONTO • SYDNEY • PARIS • FRANKFURT

PWN—POLISH SCIENTIFIC PUBLISHERS
WARSAWA
CONTENTS

PREFACE to the first edition IX

PREFACE to the second edition XI

CHAPTER I. BASIC RELATIONS AND EQUATIONS OF THERMOELASTICITY 1

1. Principle of energy conservation. Entropy balance 1
2. The fundamental differential equations of thermoelasticity 11
3. The wave equations of thermoelasticity 13
4. Uncoupling of the system of differential equations of thermoelasticity 21
5. The variational theorems of thermoelasticity 25
6. The uniqueness theorem for the solution of the problem of thermoelasticity 29
7. Reciprocity theorem of work 32
8. Stationary problems of thermoelasticity 39
9. The variational theorems of stationary thermoelasticity 45
10. Theorem of reciprocity of work in stationary thermoelasticity 49
11. The fundamental equations of the theory of thermal stresses 52
12. The principle of virtual work in the theory of thermal stresses. The Hamilton principle 58
13. The theorem of reciprocity of work for the dynamic problems of the theory of thermal stresses 60
14. The quasi-static problem of the theory of thermal stresses 62
15. Equations of classical dynamic elasticity 63

CHAPTER II. STATIONARY THREE-DIMENSIONAL THERMOELASTIC PROBLEMS 68

1. Thermal inclusions. Nucleus of thermoelastic strain 68
2. Stresses due to the action of a discontinuous temperature field in an infinite elastic body 71
3. Discontinuous temperature field in a semi-space and an elastic layer 84
4. The nucleus of thermoelastic strain in an infinite cylinder 102
5. The nucleus of thermoelastic strain in a space with a spherical cavity, in a solid sphere and in a shell 104
6. The nucleus of thermoelastic strain in an elastic semi-space with a hemispherical pit at the free surface 116
7. Stresses in the elastic semi-space due to a heat exposure on the bounding plane 120
8. Heat exposure in planes bounding an elastic layer 138
9. Stresses due to heating of an infinite cylinder 146
10. Stresses due to heating of a spherical shell (hollow sphere) 154
11. Mixed boundary value problems in stationary thermoelasticity 161
12. Heat sources in an elastic space and semi-space 173
13. Heat sources in an infinite cylinder and in a sphere 181

CHAPTER III. QUASI-STATIC AND QUASI-STATIONARY SPATIAL THERMOELASTICITY PROBLEMS 189
1. The action of heat sources in the elastic space 189
2. Non-stationary heat sources in an elastic semi-space 196
3. Heat exposure in a plane bounding an elastic semi-space 201
4. Moving heat sources in an elastic space and semi-space 211
5. Non-stationary state of stress in a sphere, due to a temperature field of spherical symmetry 217
6. Non-stationary axisymmetric state of stress in an infinite circular cylinder 225

CHAPTER IV. DYNAMIC EFFECTS DUE TO THE ACTION OF A NON-STATIONARY TEMPERATURE FIELD 228
1. Action of plane heat sources in an elastic space and semi-space 228
2. Action of concentrated heat sources in an elastic space and semi-space 237
3. Sudden heating of a spherical cavity in the infinite space 247
4. Action of heat sources in the vicinity of a spherical cavity 254

CHAPTER V. DYNAMIC PROBLEMS OF COUPLED TEMPERATURE AND STRAIN FIELDS 263
1. Plane harmonic waves in an elastic space 263
2. Spherical waves in the infinite thermoelastic space 271
3. The action of a concentrated force in the infinite space 276

CHAPTER VI. STATIONARY PLANE PROBLEMS OF THERMOELASTICITY 282
1. Plane state of strain. Plane state of stress 282
2. Thermal inclusions in an infinite disc and semi-infinite disc 291
3. Thermal inclusions in a disc strip 296
4. Axisymmetric thermal inclusions in hollow infinite cylinders and in annular discs 308
5. Discontinuous temperature field in a circular disc 313
6. Heat sources in discs 319
7. Discs having non-free boundaries 328
CHAPTER VII. QUASI-STATIC AND QUASI-STATIONARY TWO-DIMENSIONAL THERMOELASTIC PROBLEMS

1. Thermal stresses due to the action of heat sources in an infinite space and an infinite disc
2. Thermal stresses in infinite cylinders
3. Stresses due to a periodic temperature field
4. Moving heat sources on the surface of a disc

CHAPTER VIII. TWO-DIMENSIONAL DYNAMIC THERMOELASTIC PROBLEMS

1. Action of line heat sources in an infinite space
2. Action of line heat sources in an elastic semi-space
3. Rayleigh's waves in a thermoelastic medium
4. Thermally excited vibrations of solid cylinders

CHAPTER IX. THERMAL STRESSES IN PLATES

1. Stationary thermal stresses in plates
2. Solutions for infinite plates and for plates of rectilinear contours
3. Stationary stresses in circular plates
4. Plates resting on elastic foundations
5. Simultaneous bending and compression of plates. Buckling of plates
6. State of stress in plates with large deflections
7. Non-stationary quasi-static stresses in plates
8. Vibrations of plates due to thermal shock

CHAPTER X. THERMAL STRESSES IN SHELLS

1. Thermal stresses in shells of revolution
2. Thermal stresses in an open cylindrical shell
3. General and engineering bending theory of shells

CHAPTER XI. THERMAL STRESSES IN VISCOELASTIC BODIES

1. Viscoelastic bodies. Stress-strain relations
2. Quasi-static problems in viscoelastic bodies
3. Extension of Maysel's method to quasi-static problems for viscoelastic bodies
4. Dynamic effects

CHAPTER XII. NEW TRENDS OF INVESTIGATION IN THERMOELASTICITY

1. Thermal stresses in anisotropic bodies
2. Thermal stresses in isotropic non-homogeneous bodies
3. Theory of micropolar thermoelasticity
4. Thermo-piezoelectricity. Fundamental relations and differential equations
5. Magneto-thermoelasticity
CONTENTS

VIII

BIBLIOGRAPHY 540
AUTHOR INDEX 558
SUBJECT INDEX 561