Plant Abiotic Stress

Edited by

MATTHEW A. JENKS

Center for Plant Environmental Stress Physiology
Purdue University
Indiana, USA

and

PAUL M. HASEGAWA

Center for Plant Environmental Stress Physiology
Purdue University
Indiana, USA

Θ

Contents

	Preface 1 Eco-physiological adaptations to limited water environments ANDREW J. WOOD					
1						
	1.1	Introduction	1			
	1.2	Limited water environments	2			
		1.2.1 Arid and semiarid regions of the world	2 2			
		1.2.2 Plant strategies for water economy	4			
		1.2.3 Ability to survive in water-limited environments	5			
		1.2.4 Surviving water-deficit (drought) and severe				
		water-deficit (desiccation)	6			
	1.3	Adaptation to limited water environments	7			
		1.3.1 Evolution of land plants	7			
		1.3.2 Tolerance to desiccation	10			
	1.4	Refresher of the world – how to create more drought-tolerant				
		crops	10			
2	Plant cuticle function as a barrier to water loss					
		MARK GOODWIN and MATTHEW A. JENKS				
	2.1	Introduction	14			
	2.2	Cuticle structure and composition				
	2.3					
	2.4	Genetics of cuticle permeability	24			
	2.5	Conclusions	31			
3	Plant adaptive responses to salinity stress					
		GUEL A. BOTELLA, ABEL ROSADO, RAY A. BRESSAN PAUL M. HASEGAWA				
	3.1	Salt stress effects on plant survival, growth and development	37			
		3.1.1 NaCl causes both ionic and osmotic stresses	38			
		3.1.2 Secondary effects of salt stress	38			

vi CONTENTS

	3.2 Plant genetic models for dissection of salt tolerance						
				d determinant function	39		
		3.2.1	Arabido	psis thaliana as a model for glycophyte			
				es to salt stress	40		
		3.2.2	Thellung	giella halophila (salt cress) – a halophyte			
			molecul	ar genetic model	40		
	3.3						
		3.3.1		lular ion homeostatic processes	41		
			3.3.1.1	Na ⁺ influx and efflux across the plasma			
				membrane	42		
			3.3.1.2	•			
				vacuole	42		
				K ⁺ /Na ⁺ selective accumulation	44		
		3.3.2		ion of Na ⁺ homeostasis in roots and shoots	44		
		3.3.3	_	and regulatory pathways that control ion			
			homeos		45		
		3.3.4		c homeostasis: compatible osmolytes	46		
				response and antioxidant protection	46		
	3.4			ance determinants identified by functional	47		
		genetic approaches 3.4.1 Effector genes					
		3.4.1		Na ⁺ homeostasis	52		
					52		
			3.4.1.2	synthesis of compatible solutes	54		
			2412	Genes involved in ROS scavenging	54 54		
				Genes involved in ROS scavenging Genes involved in protection of cell integrity	56		
		3.4.2		ory genes	56		
		3.4.2		Kinases	56		
				Transcription factors	5		
			3.4.2.3	•	58		
	3.5	Globs		s of transcriptional activation of salt-responsive	50		
	3.3	genes					
		genes	•		58		
4	The	e CBF	cold-resp	onse pathway	7.		
		ARAH FOWLER, DANIEL COOK and					
	MIC	HAEL	F. THOM	MASHOW			
					71		
	4.1						
	4.2 Arabidopsis CBF cold-response pathway				72		
				ry and overview	72		
		4.2.2	CBF pro		75		
			4.2.2.1	General properties	75		
			4.2.2.2	Mechanism of action	76		

		4.2.3 Function of the CBF cold-response pathway			78			
			4.2.3.1	Cryoprotective proteins	79			
			4.2.3.2	Regulatory proteins	81			
			4.2.3.3	Biosynthetic proteins	82			
		4.2.4	Regulat	ion of CBF gene expression in response				
			to low t	emperature	83			
			4.2.4.1	DNA regulatory elements controlling CBF				
				expression	84			
			4.2.4.2	Proteins with positive roles in CBF				
				expression	84			
			4.2.4.3	•	85			
				Other potential CBF regulatory proteins	87			
			4.2.4.5	Light and circadian rhythms	87			
			4.2.4.6		88			
				Role of ABA	89			
	4.3	Conse	rvation o	f the CBF cold-response pathway	89			
		4.3.1	Brassic	a napus	89			
		4.3.2	Tomato		90			
		4.3.3			92			
	4.4	Concl	uding ren	narks	93			
5	Plant responses to high temperature 10							
_		ANE LARKINDALE, MICHAEL MISHKIND and						
		ELIZABETH VIERLING						
					100			
	5.1		troduction					
	5.2 Physiological responses to high temperature			101				
				mperature limits to optimal plant performance	101			
				nsitivity of photosynthesis	102			
				nsitivity of reproduction	104 104			
	5.3	•						
	5.4			oteins/molecular chaperones	105			
			Hsp100	I/CIpB	106			
			Hsp90		110			
			Hsp70/1		111			
			Hsp60/		111			
				SP family of proteins	112			
	5.5			ents of the response to heat	114			
				dant production	115			
				eat-stress regulated genes	118			
				eat-protective responses	120			
		5.5.4		s defective in heat tolerance	121			
		5.5.5	Transge	enic plants with altered heat tolerance	122			

viii CONTENTS

	5.6	Signaling pathways involved in response to heat	125
		5.6.1 Heat shock transcription factors	125
		5.6.2 Other signaling pathways	126
		5.6.3 Abscisic acid	126
		5.6.4 Salicylic acid	127
		5.6.5 Calcium	127
		5.6.6 Active oxygen species	128
		5.6.7 Ethylene	128
		5.6.8 Signaling lipids	129
		5.6.9 Kinases and phosphatases	129
	5.7	Genetic variation in heat tolerance	131
		5.7.1 Agricultural/horticultural plants	131
		5.7.2 Natural variation in heat tolerance	132
	5.8	Summary	132
6	V. F	ptive responses in plants to nonoptimal soil pH AMÍREZ-RODRÍGUEZ, J. LÓPEZ-BUCIO and	145
	L. H	IERRERA-ESTRELLA	
	6.1	Introduction	145
	6.2	Soil pH	146
	6.3	Soil acidification	146
	6.4	Acid soils	147
	6.5	Calcareous soils	148
	6.6	Plant responses to soil stress	149
	6.7	•	150
	6.8	Aluminum tolerance by exclusion	150
	6.9	Aluminum tolerance by internal accumulation	152
	6.10	· ·	153
	6.11	•	155
		6.11.1 Phosphorus deficiency	155
		6.11.2 Improving P efficiency in transgenic plants	156
		6.11.3 Plant responses to iron deficiency	158
	6.12		161
		6.12.1 Effects of iron availability on transfer cell formation	161
		6.12.2 Effects of nutrient availability on root hair formation	162
		6.12.3 Effects of nutrient availability on root branching	162
	6.13	• •	
		mineral nutrition	163
	6.14	••	
		nutrition	164

*CONTENTS ix

7	Plant response to herbicides				
	WIL	LLIAM E. DYER and STEPHEN C. WELLER			
	7.1	Introduction	171		
	7.2	Photosynthetic inhibitors	174		
		7.2.1 Resistance	176		
	7.3	Biosynthetic inhibitors	177		
		7.3.1 Branched-chain amino acid synthesis inhibitors	177		
		7.3.1.1 Resistance	179		
		7.3.2 Aromatic amino acid synthesis inhibitors	181		
		7.3.2.1 Resistance	184		
		7.3.3 Fatty acid synthesis and elongation inhibitors	186		
		7.3.3.1 Resistance	189		
		7.3.4 Cellulose synthesis inhibitors	190		
		7.3.4.1 Resistance	190		
		7.3.5 Folic acid synthesis inhibitors	190		
		7.3.5.1 Resistance	191		
		7.3.6 Nitrogen metabolism inhibitors	191		
		7.3.6.1 Resistance	191		
		7.3.7 Quinone synthesis inhibitors	192		
		7.3.7.1 Resistance	193		
		7.3.8 Carotenoid biosynthesis inhibitors	193		
		7.3.8.1 Resistance Induction of herbicide metabolism	194		
	7.4	194			
		7.4.1 Resistance Protoporphyrinogen oxidase inhibitors	196		
	7.5	196			
		7.5.1 Resistance	197		
	7.6	Wittotic disruptors	197		
		7.6.1 Resistance	198		
	7.7	Hormone disruptors	198		
	- 0	7.7.1 Resistance	199		
	7.8	•	201		
	7.9	202			
8					
	MANU AGARWAL and JIAN-KANG ZHU				
	8.1				
		8.1.1 Sensors	216		
		8.1.2 ROS	218		
		8.1.3 Calcium	220		
		8.1.4 Phospholipids	221		

X CONTENTS

		8.1.5	SOS pathway	224
		8.1.6	SOS3-like Ca ²⁺ -binding proteins and SOS2-like	
			protein kinases	227
		8.1.7	CDPKs	228
		8.1.8	MAPKs	229
		8.1.9	ICE1 pathway for cold regulation	230
	8.2		ation of gene expression by ABA	234
	8.3	Conclu	usions and perspectives	237
	8.4	Summ	ary	237
9	Gen	omic A	nalysis of Stress Response	248
	MO'	TOAKI	SEKI, JUNKO ISHIDA, MAIKO NAKAJIMA,	
	AKI	KO EN	JU, KEI IIDA, MASAKAZU SATOU,	
	MIK	I FUJI	ΓA, YOSHIHIRO NARUSAKA, MARI NARUSAKA,	
	TET	SUYA	SAKURAI, KENJI AKIYAMA, YOUKO OONO,	
	AY	AKO K	AMEI, TAISHI UMEZAWA, SAHO MIZUKADO,	
	KYO	DNOSH	IN MARUYAMA, KAZUKO	
	YAl	MAGU	CHI-SHINOZAKI and KAZUO SHINOZAKI	
	9.1	Intro	duction	248
	9.2	Expr	ession profiling under stress conditions by cDNA	
		micro	parray analysis	248
	9.3	DNA	Microarrays are an excellent tool for identifying	
			s regulated by various stresses	249
	9.4	DNA	microarrays are a useful tool for identifying the target	
		gene	s of the stress-related transcription factors	250
	9.5		ession profiling in various stress-related mutants	253
	9.6		dration- or proline-inducible genes and functions of	
		their	gene products identified by RAFL cDNA microarray	254
	9.7	Abio	tic stress-inducible genes identified using microarrays	
		in me	onocots .	255
	9.8	Many	y stress- or hormone-inducible transcription factor genes	•
		have	been identified by the transcriptome analysis	256
		9.8.1	7K RAFL cDNA microarray analysis	256
		9.8.2	GeneChip analysis	257
	9.9	Appl	ication of full-length cDNAs to structural and functional	
		analy	sis of plant proteins	258
	9.10	Conc	clusions and perspectives	259
	9.11	Sumi	mary	260
In	dex			266