

BAYESIAN POPULATION ANALYSIS USING WinBUGS

A HIERARCHICAL PERSPECTIVE

MARC KÉRY AND MICHAEL SCHAUB

Swiss Ornithological Institute
6204 Sempach
Switzerland

Foreword by

STEVEN R. BEISSINGER

ELSEVIER

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO
SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier

Contents

Foreword xi

Preface xiii

Acknowledgments xvii

1. Introduction

- 1.1 Ecology: The Study of Distribution and Abundance and of the Mechanisms Driving Their Change 1
- 1.2 Genesis of Ecological Observations 6
- 1.3 The Binomial Distribution as a Canonical Description of the Observation Process 9
- 1.4 Structure and Overview of the Contents of this Book 13
- 1.5 Benefits of Analyzing Simulated Data Sets: An Example of Bias and Precision 16
- 1.6 Summary and Outlook 20
- 1.7 Exercises 21

2. Brief Introduction to Bayesian Statistical Modeling

- 2.1 Introduction 23
- 2.2 Role of Models in Science 24
- 2.3 Statistical Models 27
- 2.4 Frequentist and Bayesian Analysis of Statistical Models 28
- 2.5 Bayesian Computation 38
- 2.6 WinBUGS 38
- 2.7 Advantages and Disadvantages of Bayesian Analyses by Posterior Sampling 41
- 2.8 Hierarchical Models 43
- 2.9 Summary and Outlook 44

3. Introduction to the Generalized Linear Model: The Simplest Model for Count Data

- 3.1 Introduction 48
- 3.2 Statistical Models: Response = Signal + Noise 48
- 3.3 Poisson GLM in R and WinBUGS for Modeling Time Series of Counts 55
- 3.4 Poisson GLM for Modeling Fecundity 66
- 3.5 Binomial GLM for Modeling Bounded Counts or Proportions 67
- 3.6 Summary and Outlook 71
- 3.7 Exercises 72

4. Introduction to Random Effects: Conventional Poisson GLMM for Count Data

- 4.1 Introduction 73
- 4.2 Accounting for Overdispersion by Random Effects-Modeling in R and WinBUGS 82
- 4.3 Mixed Models with Random Effects for Variability among Groups (Site and Year Effects) 90
- 4.4 Summary and Outlook 110
- 4.5 Exercises 112

5. State-Space Models for Population Counts

- 5.1 Introduction 115
- 5.2 A Simple Model 118
- 5.3 Systematic Bias in the Observation Process 121
- 5.4 Real Example: House Martin Population Counts in the Village of Magden 126
- 5.5 Summary and Outlook 131
- 5.6 Exercises 131

6. Estimation of the Size of a Closed Population from Capture–Recapture Data

- 6.1 Introduction 134
- 6.2 Generation and Analysis of Simulated Data with Data Augmentation 139
- 6.3 Analysis of a Real Data Set: Model M_{tbl} for Species Richness Estimation 157
- 6.4 Capture–Recapture Models with Individual Covariates: Model M_{t+x} 162
- 6.5 Summary and Outlook 169
- 6.6 Exercises 170

7. Estimation of Survival from Capture–Recapture Data Using the Cormack–Jolly–Seber Model

- 7.1 Introduction 172
- 7.2 The CJS Model as a State-Space Model 175
- 7.3 Models with Constant Parameters 177
- 7.4 Models with Time-Variation 183
- 7.5 Models with Individual Variation 192
- 7.6 Models with Time and Group Effects 199
- 7.7 Models with Age Effects 208
- 7.8 Immediate Trap Response in Recapture Probability 212
- 7.9 Parameter Identifiability 216
- 7.10 Fitting the CJS to Data in the M-Array Format: The Multinomial Likelihood 220
- 7.11 Analysis of a Real Data Set: Survival of Female Leisler's Bats 231
- 7.12 Summary and Outlook 237
- 7.13 Exercises 238

8. Estimation of Survival Using Mark-Recovery Data

- 8.1 Introduction 241
- 8.2 The Mark-Recovery Model as a State-Space Model 243
- 8.3 The Mark-Recovery Model Fitted with the Multinomial Likelihood 248
- 8.4 Real-Data Example: Age-Dependent Survival in Swiss Red Kites 255
- 8.5 Summary and Outlook 261
- 8.6 Exercises 261

9. Estimation of Survival and Movement from Capture–Recapture Data Using Multistate Models

- 9.1 Introduction 264
- 9.2 Estimation of Movement between Two Sites 268
- 9.3 Accounting for Temporary Emigration 281
- 9.4 Estimation of Age-Specific Probability of First Breeding 288
- 9.5 Joint Analysis of Capture–Recapture and Mark-Recovery Data 295
- 9.6 Estimation of Movement among Three Sites 300
- 9.7 Real-Data Example: The Showy Lady's Slipper 307
- 9.8 Summary and Outlook 311
- 9.9 Exercises 312

10. Estimation of Survival, Recruitment, and Population Size from Capture–Recapture Data Using the Jolly–Seber Model

- 10.1 Introduction 316
- 10.2 The JS Model as a State-Space Model 317
- 10.3 Fitting the JS Model with Data Augmentation 319
- 10.4 Models with Constant Survival and Time-Dependent Entry 328
- 10.5 Models with Individual Capture Heterogeneity 335
- 10.6 Connections between Parameters, Further Quantities and Some Remarks on Identifiability 339
- 10.7 Analysis of a Real Data Set: Survival, Recruitment and Population Size of Leisler's Bats 341
- 10.8 Summary and Outlook 345
- 10.9 Exercises 346

11. Estimation of Demographic Rates, Population Size, and Projection Matrices from Multiple Data Types Using Integrated Population Models

- 11.1 Introduction 348
- 11.2 Developing an Integrated Population Model (IPM) 350
- 11.3 Example of a Simple IPM (Counts, Capture–Recapture, Reproduction) 357
- 11.4 Another Example of an IPM: Estimating Productivity without Explicit Productivity Data 363

11.5 IPMs for Population Viability Analysis	366
11.6 Real Data Example: Hoopoe Population Dynamics	371
11.7 Summary and Outlook	379
11.8 Exercises	380

12. Estimation of Abundance from Counts in Metapopulation Designs Using the Binomial Mixture Model

12.1 Introduction	383
12.2 Generation and Analysis of Simulated Data	388
12.3 Analysis of Real Data: Open-Population Binomial Mixture Models	396
12.4 Summary and Outlook	409
12.5 Exercises	411

13. Estimation of Occupancy and Species Distributions from Detection/Nondetection Data in Metapopulation Designs Using Site-Occupancy Models

13.1 Introduction	414
13.2 What Happens When $p < 1$ and Constant and p is Not Accounted for in a Species Distribution Model?	419
13.3 Generation and Analysis of Simulated Data for Single-Season Occupancy	420
13.4 Analysis of Real Data Set: Single-Season Occupancy Model	427
13.5 Dynamic (Multiseason) Site-Occupancy Models	436
13.6 Multistate Occupancy Models	450
13.7 Summary and Outlook	459
13.8 Exercises	460

14. Concluding Remarks

14.1 The Power and Beauty of Hierarchical Models	464
14.2 The Importance of the Observation Process	472
14.3 Where Will We Go?	474
14.4 The Importance of Population Analysis for Conservation and Management	476

Appendix 1: A List of WinBUGS Tricks 479

Appendix 2: Two Further Useful Multistate Capture–Recapture Models 487

References 497

Index 515