Table of Contents

Preface, xix
Acknowledgments, xxiii
The Editors, xxv
Contributors, xxvii

SECTION 1 Introduction, Microscopy, Fluorophores

CHAPTER 1 • Fluorescence Lifetime-Resolved Imaging: What, Why, How—A Prologue 3

ROBERT M. CLEGG

1.1 INTRODUCTION 3
1.2 GOAL OF THIS CHAPTER 4
1.3 WHY MEASURE FLUORESCENCE LIFETIMES? 4
1.4 WHY MEASURE LIFETIME-RESOLVED IMAGES? 7
1.5 SPECIFIC FEATURES OF THE DIFFERENT PATHWAYS AND RATES OF DE-EXCITATION 8
1.5.1 Intrinsic Rate of Emission (Fluorescence) 8
1.5.2 Thermal Relaxation (Internal Conversion) 10
1.5.3 Molecular Relaxation of the Solvent or Molecular Matrix Environment 11
1.5.4 Quenchers (Dynamic) 12
1.5.5 Excited-State Reactions 12
1.5.6 Förster Resonance Energy Transfer (FRET) 13
1.5.7 Intersystem Crossing and Delayed Emission 15
1.5.8 Slow Luminescence without Intersystem Crossing 16
1.5.9 Photolysis (Process and Interpretation of Its Measurement) 17
1.5.10 The Unifying Feature of Extracting Information from Excited-State Pathways 18
1.6 OTHER PARAMETERS RELATED TO LIFETIME-RESOLVED FLUORESCENCE—DYNAMIC AND STEADY-STATE MEASUREMENTS 18
1.6.1 Anisotropy Decay 18
1.6.2 Steady-State Quenching (Dynamic) Measurement 21
1.7 DATA ACQUISITION 21
1.7.1 Scanning and Full Field 21
 1.7.1.1 Scanning Modes 22
 1.7.1.2 Full-Field Modes 23
1.7.2 Time and Frequency Domains 23
 1.7.2.1 Time Domain 24
 1.7.2.2 Frequency Domain 25
1.7.3 Equivalence of Time and Frequency Domains 26
1.7.4 Performance Goals and Comparisons 26
1.8 DATA ANALYSIS 27
1.9 DISPLAY OF LIFETIME-RESOLVED IMAGES 28
1.10 SUMMARY 28
REFERENCES 29

CHAPTER 2 • Principles of Fluorescence for Quantitative Fluorescence Microscopy 35
NEIL ANTHONY, PENG GUO, AND KEITH BERLAND

2.1 INTRODUCTION 35
2.2 WHAT IS FLUORESCENCE? 35
2.3 ABSORPTION 36
 2.3.1 Molecular Excitation Rates 38
 2.3.1.1 One-Photon Excitation 39
 2.3.1.2 Two-Photon Excitation 41
2.4 FLUORESCENCE AND MOLECULAR RELAXATION PATHWAYS 45
 2.4.1 Internal Conversion 45
 2.4.2 Fluorescence Emission 45
 2.4.2.1 Quantum Yield 47
 2.4.2.2 Fluorescence Lifetimes 47
 2.4.2.3 Fluorescence Emission Spectra 49
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.3 Nonradiative Relaxation Pathways</td>
<td>50</td>
</tr>
<tr>
<td>2.4.3.1 Basics of FRET</td>
<td>51</td>
</tr>
<tr>
<td>2.4.3.2 Intersystem Crossing and Phosphorescence</td>
<td>52</td>
</tr>
<tr>
<td>2.4.4 Photoselection and Anisotropy</td>
<td>52</td>
</tr>
<tr>
<td>2.5 MEASURING FLUORESCENCE IN THE MICROSCOPE</td>
<td>54</td>
</tr>
<tr>
<td>2.5.1 Sensitivity of Fluorescence Measurements</td>
<td>54</td>
</tr>
<tr>
<td>2.5.1.1 Fluorescence Signals</td>
<td>56</td>
</tr>
<tr>
<td>2.5.2 Observation Volumes and Molecular Brightness</td>
<td>56</td>
</tr>
<tr>
<td>2.5.3 Saturation</td>
<td>57</td>
</tr>
<tr>
<td>2.5.4 Photobleaching</td>
<td>58</td>
</tr>
<tr>
<td>2.6 SUMMARY</td>
<td>59</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>59</td>
</tr>
</tbody>
</table>

CHAPTER 3 Visible Fluorescent Proteins for FRET-FLIM

Richard N. Day

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 INTRODUCTION</td>
<td>65</td>
</tr>
<tr>
<td>3.2 BACKGROUND</td>
<td>66</td>
</tr>
<tr>
<td>3.2.1 Overview of the Fluorescent Proteins</td>
<td>66</td>
</tr>
<tr>
<td>3.2.2 Spectral Variants from the Aequorea GFP</td>
<td>68</td>
</tr>
<tr>
<td>3.2.3 Aequorea Fluorescent Proteins and Dimer Formation</td>
<td>70</td>
</tr>
<tr>
<td>3.2.4 New Fluorescent Proteins from Corals</td>
<td>70</td>
</tr>
<tr>
<td>3.3 METHODS</td>
<td>72</td>
</tr>
<tr>
<td>3.3.1 Visible Fluorescent Proteins for FRET Measurements</td>
<td>72</td>
</tr>
<tr>
<td>3.3.2 Standards for Live-Cell FRET Imaging</td>
<td>73</td>
</tr>
<tr>
<td>3.3.3 Using FRET-FLIM to Detect Protein Interactions in Living Cells</td>
<td>75</td>
</tr>
<tr>
<td>3.3.4 Verifying Protein Interactions Using Acceptor Photobleaching FRET</td>
<td>77</td>
</tr>
<tr>
<td>3.3.5 Alternative Fluorophore Pairs for FRET-FLIM</td>
<td>77</td>
</tr>
<tr>
<td>3.3.6 Fluorescent Proteins Designed Specifically for FLIM Applications</td>
<td>79</td>
</tr>
<tr>
<td>3.4 CRITICAL DISCUSSION</td>
<td>81</td>
</tr>
<tr>
<td>3.4.1 General Considerations and Limitations</td>
<td>81</td>
</tr>
<tr>
<td>3.4.2 Overexpression Artifacts</td>
<td>82</td>
</tr>
<tr>
<td>3.4.3 Factors Limiting FRET-FLIM</td>
<td>82</td>
</tr>
<tr>
<td>3.4.4 False Positives and False Negatives</td>
<td>83</td>
</tr>
<tr>
<td>3.4.5 Analysis in the Cell Population</td>
<td>83</td>
</tr>
</tbody>
</table>
SECTION 2 Instrumentation

CHAPTER 4 • Wide-Field Fluorescence Lifetime Imaging Microscopy
Using a Gated Image Intensifier Camera

4.1 INTRODUCTION
4.2 BACKGROUND
4.3 METHODS
 4.3.1 Theory behind the RLD Method
 4.3.1.1 Single-Exponential Decay
 4.3.1.2 Double-Exponential Decay
 4.3.2 Components Required for RLD-Based Lifetime Imaging
 4.3.3 How Data Were Acquired Using the RLD Method
 4.3.3.1 Calibration of the System with a Known Fluorophore
 (Single-Exponential Decay)
 4.3.3.2 Double-Exponential Decays: Biological Examples
4.4 CRITICAL DISCUSSION
4.5 PITFALLS
4.6 SUMMARY

APPENDIX 4.1: MONTE CARLO SIMULATION
APPENDIX 4.2: PREPARATION OF CELLS

CHAPTER 5 • Frequency-Domain FLIM

5.1 INTRODUCTION TO FREQUENCY-DOMAIN METHODS
 5.1.1 Overview
 5.1.2 Heterodyne and Homodyne Methods for Measuring Fluorescence Lifetimes
 5.1.3 A Few Preliminary Comments
5.2 RELATIONSHIP BETWEEN OBSERVABLES AND FLUORESCENCE LIFETIMES

5.2.1 A Primer in Complex Analysis
5.2.2 A General Expression for the Fluorescence Signal
5.2.3 A General Expression for the Measured Homo-/Heterodyne Signal
5.2.4 Single- Versus Multifrequency FLIM
 5.2.4.1 Single-Frequency FLIM
 5.2.4.2 Multifrequency FLIM
 5.2.4.3 Homodyne Multifrequency FLIM
 5.2.4.4 Heterodyne Multifrequency FLIM

5.3 EXTRACTING THE DEMODULATION AND PHASE SHIFT VALUES USING A DIGITAL FOURIER TRANSFORM

5.4 VIDEO-RATE FLIM
 5.4.1 Overview
 5.4.2 Instrumentation
 5.4.2.1 Illumination Sources and Electro-optics for Modulated Excitation Light
 5.4.2.2 Gain-Modulated Image Intensifiers
 5.4.2.3 Optical Setup and Electronics
 5.4.3 Corrections for Random Noise and Systematic Errors
 5.4.3.1 Correcting for Laser Fluctuations and Dark Current
 5.4.3.2 Gain-Modulated Image Intensifier Performance

5.5 ENHANCED FLIM MODES
 5.5.1 Video-Rate Confocal FLIM
 5.5.2 Rapid Spectral FLIM

5.6 DATA DISPLAY
 5.6.1 Dual-Layer FLIM Images
 5.6.2 Dual-Layer Fractional Concentration Images

5.7 SUMMARY
REFERENCES

CHAPTER 6 • Laser Scanning Confocal FLIM Microscopy

HANS C. GERRITSEN, ARIEN BADER, AND SASHA AGRONSKAIA

6.1 INTRODUCTION
 6.1.1 Historical Background
CHAPTER 9 • Spectrally Resolved Fluorescence Lifetime Imaging Microscopy: SLIM/mwFLIM

CHRISTOPH BISKUP, BIRGIT HOFFMANN, KLAUS BENNDORF, AND ANGELIKA RÜCK

9.1 INTRODUCTION 211
9.2 BACKGROUND 214
 9.2.1 The Spectral Axis of the Fluorescence Decay Surface 214
 9.2.2 The Time Axis of the Fluorescence Decay Surface 216
 9.2.3 Global Analysis 217
 9.2.4 A Special Case: Global Analysis of FRET Measurements 218
9.3 METHODS 224
 9.3.1 The Setup 224
 9.3.2 Operation Principle of the Streak Camera 226
 9.3.3 Operation Principle of the mwFLIM/SLIM Setup 226
 9.3.4 Benefits of the Techniques 228
 9.3.5 Calibration 229
 9.3.5.1 Calibration of the Spectral Axis 229
 9.3.5.2 Calibration of the Time Axis 230
 9.3.5.3 Calibration of the Intensity Axis 230
 9.3.6 Data Analysis 231
 9.3.6.1 The Instrument Response Function 231
 9.3.6.2 Deconvolution and Data Fitting 232
 9.3.7 Applications 234
 9.3.7.1 Functional Staining of Cell Structures 234
 9.3.7.2 Photodynamic Therapy (PDT) 234
 9.3.7.3 Förster Resonance Energy Transfer 237
9.4 CRITICAL DISCUSSION 239
9.5 SUMMARY 241
REFERENCES 241
SECTION 3 Data Analysis

CHAPTER 11 • General Concerns of FLIM Data Representation and Analysis: Frequency-Domain Model-Free Analysis 291

YI-CHUN CHEN, BRYAN Q. SPRING, CHITTANON BURANACHAI, BIANCA TONG, GEORGE MALACHOWSKI, AND ROBERT M. CLEGG

11.1 INTRODUCTION 291

11.2 TIME DOMAIN ASSUMING VERY SHORT EXCITATION PULSES 293
11.3 FREQUENCY DOMAIN

11.3.1 Calculating $F(t)_{\text{meas}}$ Directly from the Convolution Integral 296
11.3.2 Calculating $F(t)_{\text{meas}}$ from the Finite Fourier Transform of the Repetitive δ-Pulse Result 299
11.3.3 Calculating the Frequency Response from the Convolution Theorem of Fourier Transforms 301

11.4 ANALYSIS OF THE MEASURED DATA, $F(T)_{\text{MEAS}}$, AT EVERY PIXEL 302

11.5 REMARKS ABOUT SIGNAL-TO-NOISE CHARACTERISTICS OF TIME- AND FREQUENCY-DOMAIN SIGNALS: COMPARISON TO SINGLE-CHANNEL EXPERIMENTS 303

11.6 FLIM EXPERIMENTS: CHALLENGES, ADVANTAGES, AND SOLUTIONS 305

11.7 HOW FLIM CIRCUMVENTS THE DATA DELUGE 306

11.7.1 Polar Plots of Frequency-Domain Data (Model-Free Analysis) 307

11.7.1.1 Polar Plot Description of Fluorescence Directly Excited by Light Pulses 307
11.7.1.2 Polar Plot of Fluorescence from a Product Species of an Excited-State Reaction 311

11.7.2 Combining Spectra and Polar Plots 314

11.7.2.1 Two Different Noninteracting Fluorophores 315
11.7.2.2 FRET: Observing Donor and Acceptor Fluorescence Simultaneously 318

11.8 WAVELETS AND DENOISING 320

11.8.1 Why Use This Image Analysis? 320

11.8.2 Wavelet Transforms for Discriminating Fluorescence Lifetimes Based on Spatial Morphology 321

11.8.2.1 What Is a Wavelet Transform? 321
11.8.2.2 Applications of Wavelets to Homodyne FLIM 324

11.8.3 Denoising Homodyne FLIM Data 325

11.8.3.1 Sources of Noise for Homodyne FLIM 325
11.8.3.2 Removal of Signal-Dependent Noise: TI-Haar Denoising 325
11.8.3.3 TI-Haar Denoising Improves Homodyne FLIM Accuracy 326

11.8.4 The Future of Wavelet and Denoising Image Analysis for Homodyne FLIM 328

11.9 NONITERATIVE DATA REGRESSION (CHEBYSHEV AND LAGUERRE POLYNOMIALS) 330

11.9.1 Noniterative Data Regression 330
11.9.2 Convexity in Modeling and Multiple Solutions 330
 11.9.2.1 Formulation of Modeling as a Dynamic System 332
 11.9.2.2 Solution to Convexity in a Hilbert Space 332
 11.9.2.3 Error Evaluation 334

REFERENCES 335

CHAPTER 12 • Nonlinear Curve-Fitting Methods for Time-Resolved Data Analysis 341

IGNACY GRYCZYNKI, RAFAŁ LUCHOWSKI, SHASHANK BHARILL, JULIAN BOREJDO, AND ZYGMUNT GRYCZYNKI

12.1 INTRODUCTION 341
12.2 BACKGROUND 342
12.3 METHODS 343
 12.3.1 Basic Terminology and Assumptions 343
 12.3.2 Least-Squares Analysis 345
 12.3.2.1 Time Domain 346
 12.3.2.2 Frequency Domain 348
 12.3.3 Least-Squares Parameter Estimation 349
 12.3.4 Diagnostics for Quality of Curve-Fitting Results 350
 12.3.5 Uncertainty of Curve-Fitting Procedures 350
12.4 EXAMPLES 351
 12.4.1 How to Analyze Experimental Data 351
 12.4.2 Systematic Errors 352
 12.4.2.1 Light Delay 352
 12.4.2.2 Color Effect in the Detector 353
 12.4.2.3 Polarization Effect 355
 12.4.2.4 Pileup Effect 356
 12.4.2.5 Solvent Effect 357
 12.4.3 Analysis of Multiexponential Decays 358
 12.4.3.1 Effect of the Signal Level 359
 12.4.3.2 Two and Three Components of Intensity Decays 361
 12.4.3.3 Fluorescence Lifetime Distribution: Biological Examples 364
12.5 SUMMARY 367
REFERENCES 368
CHAPTER 13 • Global Analysis of Frequency Domain FLIM Data

HERNAN E. GRECCO AND PETER J. VERVEER

13.1 INTRODUCTION 371
13.2 FOURIER DESCRIPTION OF FLIM DATA 372
13.3 GLOBAL ANALYSIS OF FLIM DATA 374
13.4 APPLICATION TO FRET-FLIM DATA 375
13.5 DISCUSSION AND OUTLOOK 375
13.6 SUMMARY 380
APPENDIX 13.1: METHODS 380
 Cell Preparation 380
 Fluorescence Lifetime Imaging Microscopy 381
REFERENCES 381

SECTION 4 Applications

CHAPTER 14 • FLIM Applications in the Biomedical Sciences

AMMASI PERIASAMY AND ROBERT M. CLEGG

14.1 INTRODUCTION 385
14.2 A BRIEF HISTORICAL JOURNEY THROUGH THE DEVELOPMENT OF LIFETIME-RESOLVED IMAGING 386
14.3 AUTOFLUORESCENCE LIFETIME IMAGING OF CELLS 388
14.4 PAP SMEAR DETECTION USING TIME-GATED LIFETIME IMAGING MICROSCOPY 390
14.5 FLIM IN ALZHEIMER'S DISEASE 394
14.6 OPTICAL PROJECTION OF FLIM IMAGES OF MOUSE EMBRYO 394
14.7 FULL-FIELD FLIM WITH QUADRANT DETECTOR 395
14.8 CONCLUSION 396
REFERENCES 398

INDEX, 401