Entropy Optimization Principles with Applications

J. N. Kapur

Jawaharlal Nehru University New Delhi, India

H. K. Kesavan

Department of Systems Design Engineering University of Waterloo Waterloo, Ontario, Canada

ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers Boston San Diego New York London Sydney Tokyo Toronto

Contents

Preface

<i>I</i> .	Entropy Optimization Principles		1
	1.1 The Rationale for Entropy Optimization Principles		1
		1.1.1 Some Basic Questions about Entropy Optimization Principles	1
		1 1 2 Why Do We Talk of Entropy	I
		Maximization Principles?	6
		1.1.3 A Seeming Paradox	7
		1.1.4 Uncertainty or Entropy?	7
	1.2	Another Entropy Optimization Principle	10
	1.3 A Diversity of Optimization Principles		14
	1.4	A Diversity of Applications	17
	1.5	Overview of the Book	20
II.	Jayn	es' Maximum Entropy Principle	23
	2.1	Introduction	23
	2.2	Properties of Shannon's Measure of Entropy	27
		2.2.1 Exercises	35

.

×.

•

2.3	Jaynes'	Maximum Entropy Principle: MaxEnt	36
	2.3.1	Exercises	41
2.4	Jaynes'	Maximum Entropy Formalism (MaxEnt)	42
	2.4.1	The Maximum Entropy Probability	
		Distribution (MEPD)	42
	2.4.2	Convexity of λ_0 as a function	
		of $\lambda_1, \lambda_2, \ldots, \lambda_m$	44
	2.4.3	Value of Maximum Entropy	46
	2.4.4	Concavity of S _{max} as a Function	
		of $a_1, a_2,, a_m$	46
	2.4.5	Interpretation of Lagrange Multipliers	48
	2.4.6	Alternative Proof That MaxEnt Gives	
		Globally Maximum Values of Entropy	48
	2.4.7	Jaynes' Entropy Concentration Theorem	49
	2.4.8	Non-Negativity of Maximizing	
		Probabilities	52
	2.4.9	Inequality Moment Constraints	53
	2.4.10) Exercises	54
2.5	MaxEn	t for Continuous-Variate Distributions	55
	2.5.1	Need for Measure of Entropy for	
		Continuous-Variate Probability	
		Distributions	55
	2.5.2	Measure of Entropy for the Continuous-	
		Variate Probability Distribution	56
	2.5.3	Jaynes' Maximum Entropy Formalism for	
		the Continuous-Variate Case	59
	2.5.4	Extension of the Range of Integration	62
	2.5.5	Exercises	64
2.6	Charact	terization of Continuous-Variate Distributions	65
	2.6.1	Maximum Entropy Probability	
		Distribution over the Range $[a, b]$	65
	2.6.2	Maximum Entropy Probability	
		Distributions over the Range $[0,\infty)$	66
	2.6.3	Maximum Entropy Probability	
		Distributions over the Range $(-\infty, \infty)$	67
	2.6.4	Multivariate Normal Distribution as	~~
		Maximum Entropy Distribution	68
	2.6.5	Summary of Results	69
	2.6.6	Exercises	70
2.7	The Ex	tended MaxEnt	71
	2.7.1	Exercises	75

•

III. Applications of Jaynes' Maximum Entropy Principle

3.1	Introduc	tion	77
3.2	Statistic	al Mechanics Distributions	78
	3.2.1	The Maxwell–Boltzmann (MB)	
		Distribution	79
	3.2.2	The Bose–Einstein (BE) Distribution	85
	3.2.3	The Fermi–Dirac (FD) Distribution	88
	3.2.4	The Intermediate Statistics (IS)	
		Distribution	90
	3.2.5	Some Applications of the Intermediate	
		Statistics Distribution	92
	3.2.6	Some Remarks on Distributions of	
		Statistical Mechanics	93
	3.2.7	Exercises	96
3.3	MaxEnt	and the Laws of Thermodynamics	98
	3.3.1	Exercises	107
3.4	MaxEnt	and Economics	108
	3.4.1	Variation of Population Density and Rents	
		in a City	108
	3.4.2	Population Distribution Subject to Travel	
		Budget Constraint	109
	3.4.3	The Maximization of Entropy and the	
		Minimization of Travel Cost	114
	3.4.4	Maximization of Entropy and	
		Minimization of the Expected Rent	
		and the Travel Budget	116
	3.4.5	Primary and Secondary Entropies	119
	3.4.6	Exercises	121
3.5	Applica	tions to Regional and Urban Planning	123
	3.5.1	Introduction	123
	3.5.2	A Transportation Problem	124
	3.5.3	Estimating the Number of Visitors to a	
		Shopping Plaza	128
	3.5.4	Estimating the Number of Shoppers	
		Living in Different Colonies	129
	3.5.5	More General Transportation Problems	130
	3.5.6	International Trade Model	131
	3.5.7	Exercises	132
3.6	Further	Applications to Statistics	133
	3.6.1	Introduction	133

77

		3.6.2	Characterization of Probability	
			Distributions as MaxEnt Distributions	134
		3.6.3	Method of Maximum Likelihood and	
			Estimation of a _i 's	136
		3.6.4	Significance of the Previous Result:	
			Equivalence of Gauss's and the	
			Likelihood Principles of Estimation	137
		3.6.5	Principle of Maximum Likelihood	
			from MaxEnt	139
		3.6.6	Comparison of Fisher's and MaxEnt	
			Methods of Estimation	139
		3.6.7	Comparison with Pearson's Method	_
			of Moments	140
		3.6.8	Information in Contingency Tables	142
		3.6.9	Log Linear Models	148
		3.6.10	Exercises	150
IV.	Kullt	ack's M	inimum Cross-Entropy Principle	151
	4.1	Introduc	tion	151
	4.2	Some Pr	operties of Kullback–Leibler's Measure	101
		of Cross	-Entropy	155
		4.2.1	Exercises	161
	4.3	Kullback	's Minimum Cross-Entropy Principle	
		(MinxEr	it)	163
		4.3.1	The Relationship of Kullback's MinxEnt	
			to Jaynes' MaxEnt	163
		4.3.2	Formalism of Kullback's MinxEnt	166
		4.3.3	Exercises	171
	4.4	Some D	iscrete-Variate MinxEnt Distributions	.171
		4.4.1	When a Variate Takes Only a Finite Set	
			of Values and the Mean Is Prescribed	171
		4.4.2	When the Variate Takes a Countably	
			Infinite Set of Values and the Mean	
			Alone Is Prescribed	174
		4.4.3	Discrete Multivariate MinxEnt	
			Probability Distributions	178
		4.4.4	Discussion of the Characterization of	
			Discrete Variate Distributions	181
		4.4.5	Exercises	186
	4.5	Some Fi	urther Applications of the MinxEnt	
		Principle	e	188

V.

.

	4.5.1	Estimating Populations of Residential	
		Colonies	188
	4.5.2	Transportation Problem Revisited	189
	4.5.3	International Trade	191
	4.5.4	Minimizing Risk in Portfolio Analysis	191
	4.5.5	Measurement of Dependence among	
		Random Variates	197
	4.5.6	Exercises	201
Furt	her App	lications of MaxEnt and MinxEnt	
Princ	ciples iples		205
5.1	Introduc	tion	205
	5.1.1	The Problem of Pattern Recognition	207
	5.1.2	Choosing A So As to Minimize the	
		Loss of Information	210
	5.1.3	Choosing A So As to Minimize the	
		Loss of Power of Discrimination	212
	5.1.4	Choosing A So As to Minimize the	
		Dependence among y_1, y_2, \ldots, y_m	215
	5.1.5	Choosing A So As to Maximize the	
		Distinguishability of y_1, y_2, \ldots, y_m	217
	5.1.6	Pattern Recognition As a Quest for	
		Minimum Entropy	218
	5.1.7	Exercises	222
5.2	Applicat	tions to Non-Linear Spectral Analysis	222
	5.2.1	Introduction to Time Series	222
	5.2.2	The Maximum Entropy Approach	227
	5.2.3	Exercises	246
5.3	Applicat	tion of MaxEnt to Queuing Theory	247
	5.3.1	The Problem	247
	5.3.2	The Arrival and Service Time Distributions	248
	5.3.3	Some Results from Queuing Theory	249
	5.3.4	Some MaxEnt System Size Distributions	252
	5.3.5	The Inverse Problem	255
	5.3.6	A New Approach to Queuing Theory	256
	5.3.7	Another Application of MaxEnt to	
		Queuing Theory	256
	5.3.8	Approximating a Given Probability	
		Distribution by MaxEnt Distributions	259
	5.3.9	Exercises	266

	5.4	Applicati	ons of Entropy Optimization Principles	
		to Param	eter Estimation	266
		5.4.1	The Problem	266
		5.4.2	Solution When the Only Information	
			Available Is About the Form of the	
			Density Function	267
		5.4.3	First Method When There Is	
			Information in the Form of a Random	
			Sample: Derivation of Principle	
			of Maximum Likelihood	269
		544	Second Method When There Is	
		5.1.1	Information in the Form of a Random	
			Sample: Principle of Maximum Equality	270
		515	Third Method When There Is Information	270
		5.4.5	in the Form of a Dandom Sample: Use	
			of Principle of Least Information	271
		516	Comparison of Second and Third	271
		3.4.0	Comparison of Second and Third	274
		5 4 7	Methods Companies with the First Method	274
		5.4.7	Comparison with the First Method	275
		5.4.8	Fourth Method When Information Is	
			Available in the Form of a Random	
			Sample	275
		5.4.9	Fifth and Sixth Methods When	
			Information Is Available in the Form	
			of a Random Sample	277
		5.4.10	Estimation of θ When Proportions in	
			Different Specified Intervals Are Given	279
		5.4.11	Exercises	281
VI.	New	Entropy	Optimization Principles	283
	6.1	New En	ropy Optimization Principles	283
		6.1.1	Possible Motivations for New Entropy	
		• • • • •	Optimization Principles	283
	6.2	Entropy	Optimization Principles	285
	0.2	621	Javnes' Maximum Entropy Principle	
		0.2.1	(MaxEnt Principle)	286
		622	Generalization of Javnes' Maximum	200
		0.2.2	Entrony Principle (GMEP or GEN	
			MayEnt Principle)	286
		672	Kullback's Minimum Cross-Entropy	200
		0.2.3	Dringiple (MinyEnt Dringiple)	207
			rinciple (whitzent rinciple)	20/

Contents

	6.2.4	Generalization of Kullback's Minimum	
		Cross-Entropy Principle (GEN	
		MinxEnt Principle)	287
	6.2.5	First Inverse Maximum Entropy Principle	287
	6.2.6	Second Inverse Maximum Entropy	
		Principle	287
	6.2.7	Third Inverse Maximum Entropy	
		Principle	288
	6.2.8	First Inverse Minimum Cross-Entropy	
		Principle	288
	6.2.9	Second Inverse Minimum Cross-Entropy	
		Principle	288
	6.2.10	Third Inverse Minimum Cross-Entropy	
		Principle	288
	6.2.11	First Minimum Interdependence	
		Principle	288
	6.2.12	Second Minimum Interdependence	
		Principle	288
	6.2.13	Minimax Entropy Principle	289
	6.2.14	Maximin Cross-Entropy Principle	289
	6.2.15	The Minimum Loss of Information	
		Principle	289
	6.2.16	The Minimum Loss of Power of	
		Discrimination Principle	290
	6.2.17	The Minimum Entropy Principle	290
	6.2.18	The Maximum Cross-Entropy Principle	290
	6.2.19	The Extended Maximum Entropy	
		Principle	290
	6.2.20	The Extended Minimum Cross-Entropy	
		Principle	291
	6.2.21	The Second Extended Maximum Entropy	
		Principle	291
	6.2.22	The Second Extended Minimum	
		Cross-Entropy Principle	291
	6.2.23	Discussion of the New Principles	292
6.3	The Entr	ropy Optimization Postulate	297
	6.3.1	The Optimization Postulate	297
	6.3.2	The Generalized Entropy Optimization	
		Principle	298
6.4	Reasons	for Considering Generalized Measures	
	of Entro	py and Cross-Entropy	298
6.5	Reasons	for Considering Inverse Principles	301

	6.6 6.7	Reasons The Prir	for Considering Dual Problems aciple of Minimum Interdependence	302 303
VII.	Gene and N	ralized Minimu	Principles of Maximum Entropy m Cross-Entropy	307
	7.1	Introduc	tion	307
	7.2	Some M	leasures of Directed Divergence	311
		7.2.1	Measures of Directed Divergence	311
		7.2.2	Csiszer's Family of Measures of Directed	
			Divergence	312
		7.2.3	Special Cases of Csiszer's Measure	314
		7.2.4	Two Related Measures of Directed	
			Divergence	315
		7.2.5	A Generalization of Csiszer's Measure	
			of Directed Divergence	316
		7.2.6	Non-Negativity of Minimizing	217
		7 7 7	Probabilities	317
	7 3	1.2.1	Exercises	319
	1.3	Some G	Energized Measures of Entropy	321
	7 4	7.3.1	Exercises	324
	7.4	Example	es of Generalized Optimization Principles	323
		7.4.1	Some Conclusions from These Examples	220
	75	7.4.2 Somo A	Exercises	220
	1.5		Introduction	220
		7.5.1	Introduction	228
		1.3.2	Marketing	2/1
		753	Massurement of Disk in Dortfolio	541
		1.5.5	Analysis	344
		754	The Generalized Logit Models	345
		7.5.5	Exercises	346
	7.6	Historic	al Development of Generalized Measures	347
*/***		r r		
VIII	. The I	rour In	verse Maximum Entropy	250
	Princ	cipies		553
	8.1	Introduc	ction	353

0.1	Introduc	uon	222
8.2	The Firs	t Inverse Maximum Entropy Principle	355
	8.2.1	Existence of Solutions	355
	8.2.2	Uniqueness of the Solution	358

Contents

	8.2.3	MaxEnt Characterizing Moments for	
		Some of the Well-Known Distributions	359
	8.2.4	Exercises	360
8.3	The Sec	ond Inverse Maximum Entropy Principle	361
	8.3.1	Motives for Generating Generalized	
		Measures of Entropy	361
	8.3.2	A Generalized Entropy Measure from	
		Consideration of Population Dynamics	362
	8.3.3	Special Cases of Generalized Measures	
		of Entropy	364
	8.3.4	Generating Appropriate Generalized	
		Entropy Measures for Innovation	
		Diffusion Models	368
	8.3.5	Generating Appropriate Generalized	200
	01210	Entropy Measures from Mathematical	
		Models in Other Fields	370
	8.3.6	Some Remarks on Generalized Measures	0.0
	0.010	of Entropy and Mathematical Models	371
	8.3.7	Exercises	372
8.4	Second	Inverse Principle: Generating Useful	5.5
0.1	Measure	es of Entropy	375
	841	Introduction	375
	842	A Family of Probability Distributions	375
	843	A General Class of Families of	575
	0.1.5	Probability Distribution	376
	844	Special Cases	376
	845	The Existence of Solutions to Problems	570
	0.115	for the Second Inverse Maximum Entropy	
		Principle	379
	846	Uniqueness of Solution for the Second	517
	0.1.0	Inverse Maximum Entrony Principle	380
	847	Exercises	381
85	The Th	ird and Fourth Inverse Maximum Entrony	501
0.5	Principle	es	382
	8.5.1	The First Example	382
	8.5.2	The Second Example	385
	8.5.3	Exercises	387
8.6	Generat	ing Generalized Measures	388
2.2	8.6.1	Generation Of Csiszer's Measure	
	0.011	of Cross–Entropy	389
	8.6.2	Measure of Entropy When There Are	207
	0.0.2	Inequality Constraints on Probabilities	391
			571

-

Statistical Mechanic	s 393
8.6.4 Exercises	395
8.7 Inverse MaxEnt and MinxEnt	Principles in
Spectral Analysis	396
8.7.1 The Inverse MaxEn	t Principle 396
8.7.2 Inverse Minimum C	ross-Entropy Principle 398
Bibliography	401
Index	405

8.6.3 A New Derivation of Fermi–Dirac and Intermediate Statistics Distributions of