

Edited by Lance H. Gunderson and Lowell Pritchard Jr.

A project of SCOPE, the Scientific Committee on Problems of the Environment, of the International Council for Science

> ISLAND PRESS Washington • Covelo • London

Contents

List of Figures and Tables	V
Foreword	x
Preface	i
Acknowledgments	ii

Part I. Understanding Resilience: Theory, Metaphors, and Frameworks

1. Resilience of Large-Scale Resource Systems
Lance H. Gunderson, C.S. Holling, Lowell Pritchard Jr., and Garry D. Peterson
What Is Resilience?
Why Study Resilience?
Properties of Complex Adaptive Systems 8 Diversity and Stability 8 Cross-Scale Dynamics 12 Panarchy 14
Propositions
Evaluation of Propositions in Large-Scale Ecosystems 17
Literature Cited
2. Models and Metaphors of Sustainability, Stability, and
Resilience
Equilibrium
Resilience and Stability 22
A Simple Prototype for Stability and Resilience
<i>Bifurcation</i>

Disturbunces and Slow Parameter Changes27Disturbances and Slow Parameter Changes29Hard Loss of Stability and Hysteresis30Hard Loss of Stability31Hysteresis and Cycles32Disturbances and Resilience33Lake Dynamics33The Baltic Sea34The Boreal Forest35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience47	Local Stability and Domain of Attraction
Two Domains of Attraction27Disturbances and Slow Parameter Changes29Hard Loss of Stability and Hysteresis30Hard Loss of Stability31Hysteresis and Cycles32Disturbances and Resilience33Lake Dynamics33The Baltic Sea34The Boreal Forest35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Disturbunces and Sow Farameter Changes
Disturbances and Slow Parameter Changes29Hard Loss of Stability and Hysteresis30Hard Loss of Stability31Hysteresis and Cycles32Disturbances and Resilience33Lake Dynamics33The Baltic Sea34The Boreal Forest35A Competitive Grazing System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Two Domains of Attraction 27
Hard Loss of Stability and Hysteresis30Hard Loss of Stability31Hysteresis and Cycles32Disturbances and Resilience33Lake Dynamics33The Baltic Sea34The Boreal Forest35A Competitive Grazing System35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Disturbances and Slow Parameter Changes
Hard Loss of Stability31Hysteresis and Cycles32Disturbances and Resilience33Lake Dynamics33The Baltic Sea34The Boreal Forest35A Competitive Grazing System35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Hard Loss of Stability and Hysteresis
Hysteresis and Cycles32Disturbances and Resilience33Lake Dynamics33The Baltic Sea34The Boreal Forest35A Competitive Grazing System35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Hard Loss of Stability 31
Disturbances and Resilience33Lake Dynamics33The Baltic Sea34The Boreal Forest35A Competitive Grazing System35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Hysteresis and Cycles
Lake Dynamics33The Baltic Sea34The Boreal Forest35A Competitive Grazing System35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Disturbances and Resilience
The Baltic Sea34The Boreal Forest35A Competitive Grazing System35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Lake Dynamics
The Boreal Forest35A Competitive Grazing System35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	The Baltic Sea
A Competitive Grazing System35Fire in a Savanna System39Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	The Boreal Forest
Fire in a Savanna System 39 Concluding Remarks 43 Acknowledgments 44 Appendix. Return Times and Resilience 44 Literature Cited 47	A Competitive Grazing System
Concluding Remarks43Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Fire in a Savanna System
Acknowledgments44Appendix. Return Times and Resilience44Literature Cited47	Concluding Remarks 43
Appendix. Return Times and Resilience44Literature Cited47	Acknowledgments
Literature Cited	Appendix. Return Times and Resilience
	Literature Cited

Part II. Resilience in Large-Scale Systems

•

3. Resilience and the Restoration of Lakes	51
Stephen R. Carpenter and Kathryn L. Cottingham	
Resilience Mechanisms	52
Pathological Dynamics	55
Alternative States	58
Resilience and Return Time	59
Assessment of Resilience	61
Significance of Biodiversity for Resilience	62
Policies for Restoration	63
Concluding Remarks	65
Acknowledgments	65
Literature Cited	66
4. The Baltic Sea: Reversibly Unstable or Irreversibly	
Stable?	71
Bengt-Owe Jansson and AnnMari Jansson	
History	71
Recent Conditions of the Baltic Sea Ecosystem	73

The Future Baltic?	74
The Baltic Ecosystem	74
Characteristics of the Sea	75
Subsystems	76
Scales of Change in the Baltic: Cycles, Trends, and Flips	79
Cyclic Patterns	79
Trends	82
Anthropogenic Indicators	85
Main Switches and Flips in the System	87
Resilience in the Baltic	90
Key Variables	90
Reversible Changes: Fluctuations between Stability Domains.	93
Irreversible Changes	95
People and Issues of the Baltic	95
Large-Scale Drivers	96
Land-Use Patterns and Impact Issues	
Ecological and Economic Services	98
Governance and Resilience	103
Concluding Remarks	104
Acknowledgments	106
Literature Cited	106
Resilience of Coral Reefs	111
Tim R. McClanahan, Nicholas V. C. Polunin, and Terry I. Done	
Reef Functions	. 112
Ecological Services	115
Alternate Structures and Interacting Processes	115
Disarchances Time Scales and Deef Feeland	110
Disturbances, Time Scales, and Reef Ecology	110
Training Distarbaries Cyclones	118
Human-Induced Disturbances	119
Nutrients and Sediments	
Resource Extraction	120
Interactions between Disturbances	123
Recovery Rates of Reefs	123
Corals	124
Fishes	125
Other Organisms and Reef Structure	125
Factors That Contribute to Resilience	127

5.

	Species Diversity	127
	Keystone Species and Redundancy	128
	Loss and Replacement of Keystone Species	129
	Spatial Heterogeneity and Refugia	134
	Synergistic Stressors	139
	Human Institutions and Coral Reef Resilience	141
	The Economic Evolution of Watersheds	142
	Low-Lying Atolls and Islands	143
	Fisheries Management and Its Contribution to Ecological	
		143
	National Governments	146
	Concluding Remarks	149
	Literature Cited	150
6.	Resilience in Wet Landscapes of Southern Florida	165
	An exhan Haurisia of Deciliance	1/5
		105
	Preshwater Everglades	168
	Florida Bay	169
	Circulation, Freshwater, and Salinity	171
	Seagrass Community Dynamics	1/2
	Modeling Seagrass Dynamics	1/3
	Management Implications	1/8
	Concluding Remarks	179
	Literature Cited	180
7.	Ecological Resilience in Grazed Rangelands: A Generic	
	Case Študy	183
	Brian H. Walker	
	The Rangeland System, Structure, and Composition	183
	Rangeland Dynamics	184
	The Drivers	184
	The Dynamics	185
	The States	186
	Rangeland Resilience: Mechanisms and Issues	187
	The Distinction between Sandy and Heavy Textured Soils	188
	Species Diversity and Resilience	188
	Maintaining Resilience through Disturbance	188
	Rangeland Dynamics near the Boundary of Resilience: The	
	Issue of Time Scales	189

The Effect of Patchiness	190
Indicators and Measures of Resilience	191
Concluding Remarks	191
Literature Cited	192
8. Resilience of Tropical Wet and Dry Forests in Puerto Rico	1 95
Ariel Lugo, Frederick N. Scatena, Whendee Silver, Sandra Molina Colón, and Peter G. Murphy	
Caribbean Forest Hierarchy	196
Overview of Forest Structure and Dynamics	197
Subtropical Wet (Tabonuco) Forest	. 197
Subtropical Dry (Deciduous to Semi-evergreen) Forest	198
Comparison of Wet and Dry Forests	199
The Interface between Disturbances and Ecosystems	204
Wind Storms	. 206
Water Availability	208
Excessive Water	209
Drought	210
Land Use Conversion	. 210
Species Invasions	213
Synergy berween Anthropogenic and Natural Disturbances	214
Ecosystem-Level Characteristics That Result in Resilience	215
Belowground Nutrients	215
Rapid Fluxes	. 216
Biotic Controls	217
Species Richness and Redundancy	218
Negative Feedbacks	218
High Species Turnover and Self-Design	218
Concluding Remarks	. 220
Acknowledgments	221
Literature Cited	. 221
9. Forest Dynamics in the Southeastern United States:	
Managing Multiple Stable States	. 227
Garry D. Peterson	
Pine-Oak Forest Dynamics in Northwest Florida	. 228
Longleaf Pine	228
Oaks, Pines, and Fires	. 229
Sand Pine	. 230

Study Site—Eglin Air Force Base 231
Modeling Landscape Dynamics 234
Management Alternatives
Prescribed Fire
Fire Management Strategies
Discussion of Burning Strategies 237
Wildfire Management Strategy 239
Rotation Fire Management Strategy 240
Responsive Fire Management Strategy
Spatial and Temporal Scales
Managing Landscapes Containing Alternative Stable States 243
Limits to Restoration
Recognizing Alternate Stable States
Importance of Burn Size
Key Areas for Intervention
Concluding Remarks 245
Literature Cited 246

Part III. Summary

10. A Summary and Synthesis of Resilience in Large-Scale
Systems
Lance H. Gunderson, Lowell Pritchard Jr., C.S. Holling, Carl Folke, and Garry D. Peterson
The Holling Frustration: The Pathology of Constancy Versus the Viability of Variability
The Bite-Back Paradox: Well-Behaved Functions Versus Shifting Controls
The MacArthur Paradox: Diversity Increases Stability Versus Diversity Increases Resilience
The Sustainability Paradox: Short-Term Efficiency Versus Long- Term Sustainability
Evaluation of Propositions
Interaction of a Few Variables
Complex Systems Have Multiple Stable States
Resilience Derives from Functional Reinforcement across Scales and from Functional Overlap within Scales
Vulnerability Increases As Sources of Novelty Are Eliminated and
Functional Diversity and Cross-Scale Functional Replication Are
Reduced

Understanding Ecological Resilience	254
Multiple Meanings	254
Loss of Ecological Resilience	257
Management and Resilience	259
Uncertainty, Understanding, and Resilience	259
Restoration and Maintenance of Resilience	261
Concluding Remarks	264
Literature Cited	264
List of Contributors	267
SCOPE Series List	271
SCOPE Executive Committee 2001–2004	275
Index	277