
Making Software
What Really Works, and Why We Believe It

Edited by Andy Oram and Greg Wilson

O'REILLY8

Beijing • Cambridge • Farnham • Koln • Sebastopol • Tokyo

C O N T E N T S

PREFACE xi

Part One GENERAL PRINCIPLES OF SEARCHING FOR AND USING EVIDENCE

1 THE QUEST FOR CONVINCING EVIDENCE 3
by Tim Menzies and Forrest Shull

In the Beginning H
The Slate of Evidence Today H
Change We Can Believe In 8
The Effect of Context 10
Looking Toward the Future 11

2 CREDIBILITY, OR WHY SHOULD I INSIST ON BEING CONVINCED? 17
by Lutz Prechelt and Marian Petre

How Evidence Turns Up in Software Engineering 17
Credibility and Relevance 19
Aggregating Evidence 22
Types of Evidence and Their Strengths and Weaknesses 25
Society, Culture, Software Engineering, and You 32
Acknowledgments 33

3 WHAT WE CAN LEARN FROM SYSTEMATIC REVIEWS 35
by Barbara Kitchenham

An Overview of Systematic Reviews 36
The Strengths and Weaknesses of Systematic Reviews 39
Systematic Reviews in Software Engineering HH
Conclusion 49

1 UNDERSTANDING SOFTWARE ENGINEERING THROUGH QUALITATIVE METHODS 55
by Andrew Ko

What Are Qualitative Methods? 56
ReadingQualitative Research 58
Using Qualitative Methods in Practice 60
Generalizing from Qualitative Results 62
Qualitative Methods Are Systematic 62

5 LEARNING THROUGH APPLICATION: THE MATURING OF THE QIP IN THE SEL 65
by Victor R. Basili

What Makes Software Engineering Uniquely Hard to Research 65

V

A Realistic Approach to Empirical Research 66
The NASA Software Engineering Laboratory: A Vibrant Testbed for Empirical Research 67
The Quality Improvement Paradigm 69
Conclusion 75

6 PERSONALITY, INTELLIGENCE, AND EXPERTISE: IMPACTS ON SOFTWARE DEVELOPMENT 79
by Jo E. Hannay

How to Recognize Good Programmers 81
Individual or Environment 95
Concluding Remarks 101

7 WHY IS IT SO HARD TO LEARN TO PROGRAM? Ill
by Mark Guzdial

Do Students Have Difficulty Learning to Program? 112
What Do People Understand Naturally About Programming? lit
Making the Tools Better by Shifting to Visual Programming 117
Contextualizing for Motivation 118
Conclusion: A Fledgling Field 121

8 BEYOND LINES OF CODE: DO WE NEED MORE COMPLEXITY METRICS? 125
by Israel Herraiz and Ahmed E. Hassan

Surveying Software 126
Measuring the Source Code 127
A Sample Measurement 128
Statistical Analysis 133
Some Comments on the Statistical Methodology 139
So Do We Need More Complexity Metrics? 1H0

Part Two SPECIFIC TOPICS IN SOFTWARE ENGINEERING

9 AN AUTOMATED FAULT PREDICTION SYSTEM 1H5
by Elaine J. Weyuker and Thomas J. Ostrand

Fault Distribution lt6
Characteristics of Faulty Files 1H9
Overview of the Prediction Model 150
Replication and Variations of the Prediction Model 151
Building a Tool 157
The Warning Label 157

10 ARCHITECTING: HOW MUCH AND WHEN? 161
by Barry Boehm

Does the Cost of Fixing Software Increase over the Project Life Cycle? 162
How Much Architecting Is Enough? 162
Using What We Can Learn from Cost-to-Fix Data About the Value of Architecting 165
So How Much Architecting Is Enough? 178
Does the Architecting Need to Be Done Up Front? 181
Conclusions 182

vi C O N T E N T S

11 CONWAY'S COROLLARY 187
by Christian Bird

Conway's Law 187
Coordination, Congruence, and Productivity 189
Organizational Complexity Within Microsoft 194
Chapels in the Bazaar of Open Source Software 201
Conclusions 205

12 HOW EFFECTIVE IS TEST-DRIVEN DEVELOPMENT? 207
by Burak Turhan, Lucas Layman, Madeline D/'ep, Hakan Erdogmus, and Forrest Shull

The TDD Pill—What Is It? 208
Summary of Clinical TDD Trials 209
The Effectiveness of TDD 211
Enforcing Correct TDD Dosage in Trials 214
Cautions and Side Effects 215
Conclusions 216
Acknowledgments 217

13 WHY AREN'T MORE WOMEN IN COMPUTER SCIENCE? 221
by MicheleA. Whitecraft and Wendy M. Williams

Why So Few Women? 222
Should We Care? 227
Conclusion 234

11 TWO COMPARISONS OF PROGRAMMING LANGUAGES 239
by Lutz Prechelt

A Language Shoot-Out over a Peculiar Search Algorithm 240
Plat_Forms: Web Development Technologies and Cultures 248
So What? 257

15 QUALITY WARS: OPEN SOURCE VERSUS PROPRIETARY SOFTWARE 259
by Diomidis Spinellis

Past Skirmishes 260
The Battlefield 261
Into the Battle 265
Outcome and Aftermath 286
Acknowledgments and Disclosure of Interest 289

16 CODE TALKERS 295
by Robert DeLine

A Day in the Life of a Programmer 295
What Is All This Talk About? 298
A Model for Thinking About Communication 307

17 PAIR PROGRAMMING 311
by Laurie Williams

A History of Pair Programming 312

C O N T E N T S v i i

314
317
319
320
321
322

329

329
330
334
336

339

339
342
345
347

349

350
351
362
366

373

374
376
381
383
389
390

393

394
397
398
403
407
410
412
413

Pair Programming in an Industrial Setting
Pair Programming in an Educational Setting
Distributed Pair Programming
Challenges
Lessons Learned
Acknowledgments

MODERN CODE REVIEW
by Jason Cohen

Common Sense
A Developer Does a Little Code Review
Group Dynamics
Conclusion

A COMMUNAL WORKSHOP OR DOORS THAT CLOSE?
by Jorge Aranda

Doors That Close
A Communal Workshop
Work Patterns
One More Thing...

IDENTIFYING AND MANAGING DEPENDENCIES IN GLOBAL SOFTWARE DEVELOPMENT
by Marcelo Cataldo

Why Is Coordination a Challenge in GSD?
Dependencies and Their Socio-Technical Duality
From Research to Practice
Future Directions

HOW EFFECTIVE IS MODULARIZATION?
by Neil Thomas and Gail Murphy

The Systems
What Is a Change?
What Is a Module?
The Results
Threats to Validity
Summary

THE EVIDENCE FOR DESIGN PATTERNS
by Waller Tichy

Design Pattern Examples
Why Might Design Patterns Work?
The First Experiment: Testing Pattern Documentation
The Second Experiment: Comparing Pattern Solutions to Simpler Ones
The Third Experiment: Patterns in Team Communication
Lessons Learned
Conclusions
Acknowledgments

C O N T E N T S

EVIDENCE-BASED FAILURE PREDICTION 415
by Nachiappan Nagappan and Thomas Ball

Introduction 416
Code Coverage 417

Code Churn 418
Code Complexity 421
Code Dependencies 422
People and Organizational Measures 423
Integrated Approach for Prediction of Failures 426

Summary 430
Acknowledgments 432

THE ART OF COLLECTING BUG REPORTS 435

by Rahul Premraj and Thomas Zimmermann

Good and Bad Bug Reports 436
What Makes a Good Bug Report? 437
Survey Results 439

Evidence for an Information Mismatch 441

Problems with Bug Reports 444
The Value of Duplicate Bug Reports 445

Not All Bug Reports Get Fixed 448

Conclusions 449

Acknowledgments 450

WHERE DO MOST SOFTWARE FLAWS COME FROM? 453

by Dewayne Perry

Studying Software Flaws 454

Context of the Study 455

Phase 1: Overall Survey 456

Phase 2: Design/Code Fault Survey 462

What Should You Believe About These Results? 486

What Have We Learned? 490

Acknowledgments 492

NOVICE PROFESSIONALS: RECENT GRADUATES IN A FIRST SOFTWARE ENGINEERING JOB 495
by Andrew Begel and Beth Simon

Study Methodology 497

Software Development Task 501
Strengths and Weaknesses of Novice Software Developers 505

Reflections 507

Misconceptions That Hinder Learning 509

Reflecting on Pedagogy 510

Implications for Change 512

MINING YOUR OWN EVIDENCE 517
by Kim Sebastian Herzij and Andreas Zeller

What Is There to M ine? 518

C O N T E N T S i x

Designing a Study 518
A Mining Primer 519
Where to Go from Here 526
Acknowledgments 528

28 COPY-PASTE AS A PRINCIPLED ENGINEERING TOOL 531
by Michael Godfrey and Cory Kapser

An Example of Code Cloning 532
Detecting Clones in Software 533
Investigating the Practice of Code Cloning 535
Our Study 540
Conclusions 543

29 HOW USABLE ARE YOUR APIS? 545
by Steven Clarke

Why Is It Important to Study API Usability? 546
First Attempts at Studying API Usability 548
If At First You Don't Succeed... 552
Adapting to Different Work Styles 559
Conclusion 563

30 WHAT DOES 10X MEAN? MEASURING VARIATIONS IN PROGRAMMER PRODUCTIVITY 567
by Steve McConnell

Individual Productivity Variation in Software Development 567
Issues in Measuring Productivity of Individual Programmers 569
Team Productivity Variation in Software Development 571

A CONTRIBUTORS 575

INDEX 587

X C O N T E N T S

