Contents

List of Tables and Figures ix
Acknowledgments xv
List of Contributors xvii

1 Introduction, George J. Bey III 1

PART ONE
Contemporary Perspectives

2 The Ballás Pottery Project: Ethnoarchaeology in Upper Egypt, Paul T. Nicholson and Helen L. Patterson 25

3 The Organization of Production and Distribution of Traditional Pottery in South Highland Peru, Karen L. Mohr Chávez 49

4 Factors Affecting Ceramic Standardization, Dean E. Arnold and Alvaro L. Nieves 93

5 Formal Models of Ceramic Production, Ezra B. W. Zubrow 115

PART TWO
Ancient Reconstructions

6 Iroquois Ceramic Production: A Case Study of Household-Level Organization, Kathleen M. S. Allen 133

7 Ceramic Production and Exchange in the Northern San Juan Region A.D. 600-900, Eric Blinman and C. Dean Wilson 155

8 Ceramic Production in Prehistoric La Mixtequilla, South-Central Veracruz, Mexico, Barbara L. Stark 175
9 Middle Classic Pottery Economics in the Tuxtla Mountains, Southern Veracruz, Mexico, *Christopher A. Pool and Robert S. Santley* 205

11 Production, Distribution, and Disposal of Roman Amphoras, *Elizabeth Lyding Will* 261

12 Integrating Ceramic Production and Distribution, *Christopher A. Pool* 275

References 315

About the Book and Editors 342
Tables and Figures

Tables

3.1 Pottery Forms Made in Raqch'i and Their Functions .. 52
3.2 Forms Produced by Male and Female Potters in Raqch'i, Q'eya, and Machaqmarka 59
3.3 Selected Prices of Pots in the Departments of Cuzco and Puno, Peru 92

4.1 Nomenclature of Vessel Measurements of Traditional Ticul, Yucatan Pottery 101
4.2 Means and Standard Deviations of Shapes ... 106
4.3 Means and Standard Deviations by Shape and Technique 106
4.4 Sample Size, Variance, and Confidence Interval by Shape and Market 107
4.5 Variance Measures for Height and Mouth Diameter in Centimeters by Technique and Shape 109
4.6 Calculated F-Ratios, Degrees of Freedom, and F-Critical Values for Techniques and Shapes 110
4.7 Calculated F-Ratios, Degrees of Freedom, and F-Critical Values of Shapes and Techniques 111

5.1 The Number of Production Techniques per Society Used Simultaneously by Potters and/or Pottery Shops in Ethnographic Societies 119
5.2 Examples of Simulations of the Number of Production Techniques per Society 120
5.3 A Production Factor: Estimates of the Average Number of Pots per Day by Type of Ceramic Fabrication Technique 122
5.4 Days Required for a Potter to Produce 1,000 Pots Using Different Combinations of Techniques 124
5.5 Days Required to Produce Varying Numbers of Vessels in Each of Four Villages Using Different Fabrication Techniques 125
Tables and Figures

5.6 Days Required to Produce 1,000 Vessels in Each of Four Villages, Based on Medium and High Estimates of Vessels Produced per Day 125
5.7 Days Required to Produce a Total of 10,000 Vessels Assuming Different Production Levels and Fabrication Techniques in Each of Four Villages 126
5.8 Optimization Results with Different Scenarios 128
6.1 Sample Means (x), Standard Deviations (s), and Coefficients of Variation (cv) by Site 151
6.2 Coefficients of Variation for Three Vessel Size Categories 152
7.1 Nonlocal Sherd Frequencies in Pre-A.D. 800 Ceramic Collections from the Dolores Area 168
8.1 Possible Production Indicators in La Mixtequilla 190
9.1 Chemical Paste Compositional Reference Unit Membership 221
9.2 Principal Component Loadings and Relative Eigenvalues 222
9.3 Principal Component Loadings and Relative Eigenvalues for Matacapan, El Picayo, and Matalapan Ceramics and Concepción Formation Clays 229
10.1 Firing Temperature Estimates (± 25° C) Based on Thermal Expansion Experiments 243
10.2 Percentage of Matrix, Silt, and Sand in Petrographically Analyzed Samples of Utilitarian Graywares 246

Figures

2.1 Map of Egypt showing key towns and cities. 26
2.2 The Qena area showing the location of the potteries at Deir el-Gharbi. 27
2.3 The master potter forming the upper part of a Ballâš jar. 31
2.4 Plan and section of a typical potter's workshop. 32
Tables and Figures

<table>
<thead>
<tr>
<th>Figure/Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Ranges of variation (horizontal bars) and means (vertical dashed lines) for rim diameters and maximum circumferences of large (l), medium (m), and small (s) categories of Ballas vessels.</td>
</tr>
<tr>
<td>2.6</td>
<td>The characteristic rim shapes of the vessels of four different potters.</td>
</tr>
<tr>
<td>2.7</td>
<td>Top, Plan of kiln, gridded floor pattern is accurate, though the scale of this feature is approximate; middle, section along line A-A1; bottom, elevation.</td>
</tr>
<tr>
<td>2.8</td>
<td>Schematic section showing for each level—number of vessels (n), number of wasters (w), and vessel color.</td>
</tr>
<tr>
<td>2.9</td>
<td>Loading the kiln for firing 1.</td>
</tr>
<tr>
<td>2.10</td>
<td>Time-Temperature graphs for firings 1 and 2 for thermocouples T1 and T2.</td>
</tr>
<tr>
<td>2.11</td>
<td>A firing in progress.</td>
</tr>
<tr>
<td>2.12</td>
<td>Site of kilns that have been dug out.</td>
</tr>
<tr>
<td>3.1</td>
<td>Map showing the location of Raqch'i and places mentioned in the text.</td>
</tr>
<tr>
<td>3.2</td>
<td>Some of the vessel forms manufactured in Raqch'i.</td>
</tr>
<tr>
<td>3.3</td>
<td>Forms made in Raqch'i for tourists.</td>
</tr>
<tr>
<td>3.4</td>
<td>David Rodriguez covers rakis made by two other men with a cream slip just prior to firing.</td>
</tr>
<tr>
<td>3.5</td>
<td>David Rodriguez Amaru making chamakas inside a room of his house.</td>
</tr>
<tr>
<td>3.6</td>
<td>Viviana Mamani Camino (David Rodriguez's wife) making a puruña.</td>
</tr>
<tr>
<td>3.7</td>
<td>The Rodriguez family helps David stack the vessels for firing.</td>
</tr>
<tr>
<td>3.8</td>
<td>A volcanic rock wall is built around the pottery to be fired, and press-molded forms are placed on top of the stack.</td>
</tr>
<tr>
<td>3.9</td>
<td>Layers of grass are carefully laid over the pottery.</td>
</tr>
<tr>
<td>3.10</td>
<td>Raqch'i potters at the August 15 annual fair in Calca.</td>
</tr>
<tr>
<td>3.11</td>
<td>Potters from Puno at the August 15 annual fair in Calca.</td>
</tr>
<tr>
<td>3.12</td>
<td>Barter at the August 15 annual fair at Oropesa.</td>
</tr>
<tr>
<td>3.13</td>
<td>Flora Quispe making a salamanka. Her husband from Sicuai, Teófilo Huarcarpuma, assists.</td>
</tr>
<tr>
<td>3.14</td>
<td>Specialized tourist forms.</td>
</tr>
</tbody>
</table>
4.1 Small ceramic bowls being used on a household altar for the Day of the Dead (All Saints) ceremonies in later October, 1984.

4.2 A variety of Ticul vessels stored in a Ticul workshop for sale as pots for ornamental plants.

4.3 Slipping *risados* by a Ticul potter.

4.4 A load of *bolas* made in 1984 for the 50th anniversary of the *gremio* of cattlemen in Ticul.

7.1 The Northern San Juan region of the American Southwest.

7.2 Distinctive pottery production tracts in the Northern San Juan region.

8.1 Central and southern Veracruz, showing selected archaeological sites and geographic features.

8.2 Project study zone and central survey area.

8.3 Central survey area and archaeological features.

8.4 Locations of waster balls are shown with solid dots.

8.5 All production indicators (see Table 8.1) shown by solid dot.

8.6 Selected production indicators which have a restricted distribution.

8.7 Localized high frequencies of pottery types that occurred once with a production indicator.

8.8 Nearby collections that have both high surface sherd density and high percentage of a type are shown with bold symbols.

9.1 Geological map of the southwestern Tuxtla Mountains showing the location of clay group sampling localities discussed in the text.

9.2 Map of Matacapan indicating the location and relative scale of Middle Classic ceramic production localities.

9.3 Plot of the first and second principal component scores for elemental concentrations in clays from the southwestern Tuxtla Mountains.

9.4 Plot of the first and second principal component scores for elemental concentrations in fine paste ceramics from production localities.
9.5 Plot of the first and second principal component scores for elemental concentrations in clays (letters) and fine paste ceramics from El Picayo (1), Matalapan (2), and Matacapan (3).

9.6 Plot of the third and fourth principal component scores for elemental concentrations in clays (letters) and fine paste ceramics from El Picayo (1), Matalapan (2), and Matacapan (3).

10.1 Contemporary pottery-making villages in the Valley of Oaxaca.

10.2 Major Monte Albán V sites in the Valley of Oaxaca.

10.3 Distribution of 18 Monte Albán V ceramic paste groups.

10.4 Distribution of the 4 largest ceramic paste groups.

10.5 Distribution of the 14 less numerous paste groups.

10.6 Major G3M bowl forms discussed in the text (adapted from Caso, Bernal, and Acosta 1967).

10.7 Distribution of G3M hemispherical bowls (T1104).

10.8 Distribution of G3M outleaned wall bowls (T1106).

10.9 Distribution of G3M composite silhouette bowls (T1105).

10.10 Distribution of G3M bowls with hollow supports (T1102).

10.11 Distribution of G3M differentially fired bowls (T1107).

10.12 Distribution of G3M ollas (T1109).

11.1 Roman wine amphora of the first half of the second century B.C.

11.2 One of the many piles of fragments that mark sites of the Roman amphora kilns in the area of Brindisi, Italy.

11.3 A few of the numerous examples of amphora trademarks from the Sestius factory in the Port of Cosa, Italy.

11.4 Spanish olive oil amphora of the first century A.D.

11.5 Amphora fragments on a slope of Monte Testaccio, Rome.

11.6 Pier 1, Port of Cosa, Italy. Detail showing amphora fragments reused as rubble in the construction and repair of pier.
11.7 Half-buried *garum* amphora used as a cinerary urn and grave-marker in the Isola Sacra, Portus, near Ostia, Italy. 272

12.1 Schematic representation of the influence of different factors on attribute systems. 295