Wolf R.Vieth

Membrane Systems: Analysis and Design

Applications in Biotechnology, Biomedicine and Polymer Science

with 146 Figures and 37 Tables

Hanser Publishers, Munich Vienna New York

Distributed in the United States of America by Oxford University Press, New York and in Canada by Oxford University Press, Canada

CONTENTS

1	Introduction	
1.0	General	1
1.1	Transient Studies	3
1.2	Microheterogeneity in Membranes	4
1.3	Biosensors and Enzyme Catalysis	5
1.4	Biocatalysts and Bioreactors	6
1.5	Chemical Messengers	6
1.6	References	7
2	Diffusion and Reaction in Microheterogeneous	
	Synthetic Membranes	
2.0	Rubbery Polymer Membranes	9
2.1	Penetrant Localization	9
2.2	Glassy Polymers and Dual Mode Transport	15
2.3	Diffusion Mechanisms	20
2.4	Time Lag Method	23
2.5	Counterdiffusion Permeability	25
2.6	Formulation of Unsteady State Binary Diffusion	27
2.7	Simulation Results	31
	Experimental Results	33
	The Change of Langmuirian Fluxes	35
	The Change of Concentrations and Flux Compensation	37
2.11	Effective Diffusivities in Mixed Gas Diffusion	38
2.12	Nomenclature	46
2.13	References	48
3	Applications of Membrane Diffusion-Reaction	
2.0	Principles	51
3.0		31
3.1	Nonequilibrium Molecular Characteristics of	51
2.2	Glassy Polymers	
3.2	Transport Effects	54
3.3	History-Dependent Sorption and Transport Behavior	57
3.4	Molecular Characterization and History-Dependent and	59
2 5	Time-Dependent Molecular States	39
3.5	Sorption and Transport Behavior in Conditioned	
	Glassy Polymers	60

xii Contents

3.7	Dual Sorption Theory Applied to Reverse	00
٠.,	Osmosis Transport	66
3.8	Concentration-Dependent Transport of Gases and Vapors	00
5.0	in Glassy Polymers	73
3.9	Monomer Localization	74
	Controlled Release	75
	Macromolecular Diffusion Through Collagen Membranes	76
	Enzyme Immobilization by Adsorption	77
	Facilitated Transport	78
	Modeling Gas Transport in Packaging Applications	79
	Perspective on Membrane Separations Process	• • •
3.12	Principles and Scale-Up Parameters	83
3 16	References	89
5.10	1014101000	•
4	Membrane Biosensors	
4.0	Introduction	93
4.1	Biosensor Membranes for Analysis	93
4.2	Types of Biosensor Membranes (BM)	94
4.3	Biosensor Structure and the Method of Immobilization	102
4.4	Introduction to Response Characteristics	108
4.5	Application Characteristics of Biosensor Membranes	113
4.6	Effect of a First Order Reaction on the Penetrant	
	Time Lag in a Membrane Biosensor	117
4.7	Spatial Distribution of Biocatalyst	119
4.8	Anisotropic Enzyme Distribution	123
4.9	Theoretical Model for Anisotropic Enzyme Membranes	124
4.10	References	128
5	Enzyme and Cell-Based Reactors	
5.0	Bioreactors	131
5.1	Reactors with Porous Annular Catalytic Walls	132
5.2	•	
	Several Reactor Designs	135
5.3	Models for Kinetically Controlled Reactions	142
5.4	Cell-Based Reactors	145
5.5	Single Enzyme Type IMC Reactors	146
5.6	Effect of Mass Transfer on the Performance of	
	Immobilized Cell Reactors	147
5.7		149
5.8	Analysis of Live Cell Reactors	150
5.9	Idealized Reactor Performance Equations	151

		Contents	xiii
	,		
5.10	Concept of a Dual Colony or Hybrid Reactor		155
5.11	Mass Transfer Considerations		158
5.12	Substrate Transport into the Immobilized Cells		158
5.13	Membrane Bioreactor-Separators and Collagen Technology		161
5.14	Simultaneous Reaction and Separation in a		
	Membrane Bioreactor		163
5.15	Experimental Strategies and Trends		168
5.16	Process Feasibility		173
5.17	Nomenclature		173
5.18	References		176
6	Reaction-Transport Coupling in Anaerobic Self-Immobilized Cultures	Digestion:	
6.0	Introduction		179
6.1	Carbon Flow Inside the Cell		180
6.2	Maintenance Energy		181
6.3	Schematic Description of the Model		183
6.4	Reactor Set Up		185
6.5	Model Equations		185
6.6	Hysteresis Due to Structure of the Beads		187
6.7	Description of the Reactor Dynamics		188
6.8	Model Discrimination		191
6.9	Parameter Estimation		196
	Model Predictions		203
	Recapitulation		205
	Analytical Hierarchies for Consideration of		
	Microstructural Effects		206
6.13	References		207
7	Role of Intracellular Chemical Messenger in Enzyme Biosynthesis	Transport	
7.0	Introduction		209
7.1	Biosynthesis of Glucose Isomerase		211
	Inducible Enzyme Biosynthesis: Lactose Induction	of	
	B-Galactosidase in E. Coli		212
7.3	Regulation of Enzyme Biosynthesis		214
7.4	Modeling the Transport of B-Galactosides Across t	he	
	Plasma Membrane	-	216
7.5	Model Verification and Discussion		222
7.6	Implicit Inclusion of Membrane Potential in the		~
	Transport Model	•	224

xiv Contents

1.1	inducer transport in Permentation	221
7.8	<u> </u>	231
7.9	Model Elements	234
	Inducer Transport in Chemostat Culture	237
	Catabolite Repression	238
	Kinetics of CMF Synthesis	240
7.13	PTS Mediated Regulation of Intracellular cAMP and	240
	Lactose Transport	242
	Regulation of Adenylate Cyclase Activity	243 245
	Inducer Exclusion	245
	Model Verification	240
	Parameter Estimation	247
	Steady State Response in Chemostat Cultures	249 252
	Inducer Transport Effects	252 255
	Transient Response in Chemostat Cultures	253 260
	Nomenclature References	260
1.22	References	201
8	Inducible Recombinant Cell Cultures and Bioreactors	
8.0	Introduction	265
8.1	Strain Development	266
8.2	Fraction of Plasmid Containing Cells	269
8.3	Plasmid Copy Number Determination	270
8.4	Immobilized Cell Concentration	271
8.5	Continuous Free Cell Bioreactor Studies	272
8.6	IMRC Bioreactor	274
8.7	IMRC Bioreactor Studies	276
8.8	• •	278
8.9		281
8.10	Steady State IMRC Bioreactor Dynamics with	
	Selection Pressure	286
	Analysis and Discussion	287
	Nomenclature	296
8.13	References	297
9	Intercellular Chemical Messenger Transport and	
_	Synaptic Response	
9.0	•	299
9.1	Chemical Messenger Binding and Transport in	
	Reconstituted Biomembrane Structures	299
9.2	Collagen Microstructure	300

	,	
9.3	Transport Studies	301
9.4	Purification and Reconstitution of Vesicles from	
	Torpedo Fish	303
9.5	Carbamylcholine-Induced ²² Na ⁺ and AChI Uptakes of	
	Reconstituted Vesicles	303
9.6	Isotherm Resolution	304
9.7	Vesicles	308
9.8	Effective Diffusivity and Ligand Binding Effects	310
9.9	Membrane Laminate Model of the	510
	Neuromuscular Junction	310
3 10	Cholinergic Receptors Involved in	310
7.10	Synaptic Transmission	315
0 11	Membrane Transport/Reaction Processes at the	515
7.11	Nerve-Muscle Junction: Nonequilibrium Model	317
3 12	Diffusion/Enzyme Kinetic Model	318
	Consideration of Other Geometries	320
	Endplate Potential: Excitation and Conduction of	320
7.17	Impulses in Nerves	321
0 15	Partial Reaction Rate Control	323
	Extension to Pulse Currents	328
	Simple Analysis of Oscillatory Behavior	329
	References	332
7.10	References	332
10	Mammalian Excitable Membranes	
10.0	Introduction	335
10.1	Ion Channels and Autonomic Receptors of	
	Cardiac Purkinje Fiber	336
10.2	Ion Channels and Autonomic Receptors of SA Node	337
	B-Adrenergic Influence on Nomotopic Automaticity	341
	Photoreceptors	342
	Brain Receptors	344
	Concluding Remarks	347
	Deferences	240

Contents xv