Python Programming for Biology

Bioinformatics and Beyond

TIM J. STEVENS
MRC Laboratory of Molecular Biology

WAYNE BOUCHER
University of Cambridge

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface
Acknowledgements

1 Prologue
- Python programming for biology

2 A beginners’ guide
- Programming principles
- Basic data types
- Program flow

3 Python basics
- Introducing the fundamentals
- Simple data types
- Collection data types
- Importing modules

4 Program control and logic
- Controlling command execution
- Conditional execution
- Loops
- Error exceptions
- Further considerations

5 Functions
- Function basics
- Input arguments
- Variable scope
- Further considerations

6 Files
- Computer files
- Reading files
- File reading examples
- Writing files
- Further considerations

7 Object orientation
- Creating classes
- Further details
Table of Contents

8 **Object data modelling**
Data models 117
Implementing a data model 119
Refined implementation 132

9 **Mathematics**
Using Python for mathematics 137
Linear algebra 144
NumPy package 150
Linear algebra examples 154

10 **Coding tips**
Improving Python code 160
A compendium of tips 164

11 **Biological sequences**
Bio-molecules for non-biologists 181
Using biological sequences in computing 188
Simple sub-sequence properties 193
Obtaining sequences with BioPython 205

12 **Pairwise sequence alignments**
Sequence alignment 208
Calculating an alignment score 214
Optimising pairwise alignment 219
Quick database searches 225

13 **Multiple-sequence alignments**
Multiple alignments 232
Alignment consensus and profiles 233
Generating simple multiple alignments in Python 239
Interfacing multiple-alignment programs 241

14 **Sequence variation and evolution**
A basic introduction to sequence variation 244
Similarity measures 253
Phylogenetic trees 262

15 **Macromolecular structures**
An introduction to 3D structures of bio-molecules 278
Using Python for macromolecular structures 286
Coordinate superimposition 299
External macromolecular structure modules 312

16 **Array data**
Multiplexed experiments 316
Reading array data 319
The 'Microarray' class 323
Array analysis 336

17 High-throughput sequence analyses 341
High-throughput sequencing 341
Mapping sequences to a genome 344
Using the HTSeq library 355

18 Images 361
Biological images 361
Basic image operations 364
Adjustments and filters 369
Feature detection 378

19 Signal processing 382
Signals 382
Fast Fourier transform 385
Peaks 389

20 Databases 401
A brief introduction to relational databases 401
Basic SQL 402
Designing a molecular structure database 406

21 Probability 421
The basics of probability theory 421
Restriction enzyme example 425
Random variables 431
Markov chains 438

22 Statistics 454
Statistical analyses 454
Simple statistical parameters 457
Statistical tests 462
Correlation and covariance 480

23 Clustering and discrimination 486
Separating and grouping data 486
Clustering methods 490
Data discrimination 504

24 Machine learning 511
A guide to machine learning 511
k-nearest neighbours 515
Self-organising maps 518
Feed-forward artificial neural networks 523
Support vector machines 534
Table of Contents

25 Hard problems
- Solving hard problems
 545
- The Monte Carlo method
 547
- Simulated annealing
 557

26 Graphical interfaces
- An introduction to graphical user interfaces
 566
- Python GUI examples
 568

27 Improving speed
- Running things faster
 582
- Parallelisation
 583
- Writing faster modules
 587

Appendices
- Appendix 1 Simplified language reference
 607
- Appendix 2 Selected standard type methods and operations
 621
- Appendix 3 Standard module highlights
 634
- Appendix 4 String formatting
 653
- Appendix 5 Regular expressions
 658
- Appendix 6 Further statistics
 668

Glossary
 671

Index
 696

The colour plates are to be found between pages 342 and 343