Sustainable Agriculture in Semi-Arid Tanzania

Edited by

Jannik Boesen; Idris Kikula and Faustin Maganga

CONTENTS

įii

Acknowledgementsvii
1
Research on Sustainable Agriculture in Semi-Arid Tanzania is a Mixed Bag - as it should be!
2
Agricultural Research and Sustainable Agriculture in Semi-Arid Tanzania10 F.M. SHAO
3 Sustainable Agriculture in Subsistence Econmies: Some Overlooked Research Issues Based on Tanzania's Experiences
4
Sustainable Agriculture in Semi-Arid Tanzania: Some Sociological Insights From Kondoa Irangi Hills, Ukara Island, Matengo Plateau & Mbulu Highlands40 C.G. MUNG'ONG'O
5
Sustainable Agriculture Under Population Stress in Semi-Arid Tanzania: The Case of Kondoa District

.

6

Household Food Security in a Soil and Water Conservation Project Area: The Case of Kondoa Eroded Area, Tanzania80 EMMA. T. LIWENGA
7 Water Infiltration Rates on Degraded Soils in Mwisanga Catchment, Kondoa,
Central Tanzania
8
Enabling Strategies and State Intervention: Major Livelihood Problems in Semi-Arid Villages in Iringa District, Tanzania
9
Land Conflicts and Channels of Conflict Resolution: Some Insights From Babati District, Tanzania
10
Effects of Tillage and Rainfall on Sorghum Yields in Semi-Arid Tanzania162 MAHOO H. F., HATIBUN., KAYOMBO B., & USSIRI D.A.N.
11
Micro-Catchment Rain Water Harvesting and Maize Growth/Yields in Semi-Arid
Areas of Morogoro and Kilimanjaro Regions

1.1

List of Tables and Figures

Table 2.1: Distribution of cattle, sheep and goats in semi-arid areas of Tanzania	13
Table 3.1: Average total and average planted area by household in Tanzania	
Table 4.1: Household distribution by wealth in Kondoa Irangi (%)	
Table 5.1: Household distribution by main activity of the household head	
Table 5.2: Prices of agricultural inputs in Kondoa District (1988/89-1994/95	
Table 5.3: Average yield of major cereal crops per hactre per kilogram	
(1993/94-1994/5)	72
Table 5.4: Transport means in the highland and lowland areas of Kondoa	
District (%)	74
Table 5.5: Population growth and density in kondoa District (1948 - 1988)	75
Table 6.1: Number and percentage of respondents involved in crop farming	
Table 6.2: Farmer's response on food production trends	
Table 6.3: Major agricultural production problems indicated by respondents	88
Table 6.4: Fertizer prices in the 1988/89 - 1994/95 agricultural seasons	
Table 6.5: Respondents distribution by farm size	90
Table 7.1: Infiltration measurements on ten sites with different soils, and degrees	
of degradation	99
Table 8.1: Social economic groups in Ikuwala & Mkulula villages. Indicative	
values of socio-economic distinctions	121
Table 8.2: Socio-economic differentiation: social characteruistics of the groups	
in Ikuwala and Mkulula	124
Table 8.3: Socio-economic differetiation and agricultural practices and	
performance	124
Table 8.4: Cash income sources of individual households (T. shs. 1000)	126
Table 8.5: Differentiation and patterns of income sources	127
Table 10.1: Effects of tillage on bulk density (immediately after harvest)	
over the three seasons -1991/92 - 1993/94	165
Table 10.2: Effects of tillage on cumulative infiltration (cm), immediately	
after harvest	166
Table 10.3: Summary of rainfall characteristics at Hombolo	168

Table 10.4: Percentage emergence and pre- and post- rainfall conditions	
Table 10.5: Sorghum grain yield and plant population as affected by tillage	
Table 10.6: Fertilizer treatment effects on yield parameters	
Table 10.7: Sorghum yield as affected by tillage and fertilizer treatment	
Table 11.1: Effects of run-off farming and soil conservation tillage on maize	
yields for Kisangara site	
Table 11.2: Effects of run-off farming and soil conservation tillage on maize	
yields for Kisangara site	

FIGURES

Figure 7.1: Location of the Mwisanga catchment study area	
Figure 7.2: Map of site where infiltration measurements were caried out	100
Figure 7.3: Comparison of infiltration rates	101
Figure 7.4: Comparison of infiltration rates between less degraded <i>lixols</i>	101
Figure 7.5: Comparison of infiltration rates between stripped areas	102
Figure 7.6: Comparison of infiltration rates between less degraded <i>lixols</i>	104
Figure 7.7: The untilled B horizon (less permeable, therefore more run-off)	104
Figure 7.8: Tilled B horizon to enhance water infiltration	105
Figure 7.9: Comparison of infiltration rates between two degraded <i>lixols</i>	105
Figure 7.10: Comparison of infiltration rates between <i>Albic Arenosol</i> and	
colluvial footslope degraded <i>lixosols</i>	
Figure 10.1: Layout of the Hombolo tillage experiment	164
Figure 10.2: Effect of tillage treatment on sorghum yields	170
Figure 10.3: Effect of fertilzer treatment on sorghum yields	172
Figure 11.1: Rainfall induces run-off on the catchment area	

vi