Thermophiles: The Keys to Molecular Evolution and the Origin of Life?

JUERGEN WIEGEL and MICHAEL W. W. ADAMS

University of Georgia, Athens, USA

	Prefa Contr	page xiii xvii			
	PART	ONE The Early Earth	1		
1	Do the Geological and Geochemical Records of the Early Earth Support the Prediction from Global Phylogenetic Models of a Thermophilic Cenancestor?				
	John A. Baross				
	1.1	Introduction	3		
	1.2	Was the early earth hot, warm or cold?	4		
	1.3	Were the early organisms mesophiles, thermophiles or			
		hyperthermophiles?	9		
	1.4	Conclusions	13		
	1.5	Summary	14		
		References -	15		
2	The I	The Early Diversification of Life and the Origin of the			
	Three	e Domains: A Proposal	19		
	Otto I	Kandler			
	2.1	Introduction	19		
	2.2	Towards a universal phylogenetic 'bush'	19		
	2.3	Origin of the proto-cells of the three domains	21		
	2.4	Origin and evolution of the domain Bacteria	23		
	2.5	Origin and evolution of the domain Archaea	24		
	2.6	Origin and evolution of the domain Eukarya	25		
	2.7	The fate of the progenotic and pre-cellular life on earth	26		
	2.8	Extraterrestrial life?	27		
	2.9	Conclusion	27		
	2.10	Summary	27		
		References	28		

Contents

3	Life	was Thermophilic for the First Two-thirds of Earth History	33
	David	W. Schwartzman	
	3.1	Introduction	33
	3.2	A case for thermophilic surface conditions for the Archaean/Early	
		Proterozoic (3.5–1.5 Ga)	35
	3.3	A geophysical model of biospheric evolution	38
	3.4	Conclusions	39.
	3.5	Summary	39
		References	41
	PART	two The Origin of Life	45
4		Case for a Hyperthermophilic, Chemolithoautotrophic Origin	
	of Li	fe in an Iron-Sulfur World	47
	Günt	er Wächtershäuser	
	4.1	Introduction	47
	4.2	General mechanism of evolution	48
	4.3	Thermophilic surface metabolism	48
	4.4	The universal pattern of metabolism	49
	4.5	Rules of retrodiction	49
	4.6	The primordial pathway of initiation	51
	4.7	The alpha cycle	52
	4.8	The earliest vitalisers	53
	4.9	The genetic machinery	54
	4.10	The thermal irreversibility of evolution	55
	4.11	Conclusions	56
	4.12	Summary References	56 56
5	Tho	Emergence of Metabolism from Within Hydrothermal Systems	59
3			57
		ett L. Shock, Tom McCollom and Mitchell D. Schulte	
	5.1	Introduction	59
	5.2	The energetics of methanogenesis in submarine hydrothermal	~~
	6.2	ecosystems	60
	5.3	The energetics of acetogenesis in submarine hydrothermal ecosystems	62 64
	5.4 5.5	Amino acid synthesis hydrothermal ecosystems The potential for hydrothermal organic synthesis	67
	5.6	Hydrothermal organic synthesis versus organic destruction	07
	5.0	in hot water	71
	57	Conclusions	72
		Summary	73
	5.0	References	74
6		Emergence of Life from FeS Bubbles at Alkaline Hot Springs	
	in a	n Acid Ocean	77
	Mich	ael J. Russell, Dan E. Daia and Allan J. Hall	
	6.1	Introduction	77
	6.2	Scale and approach	78

.

	6.3	Model	79	
	6.4	Clues from hydrothermal orebodies	82	
	6.5	Clues from metabolism	84	
	6.6	Clues from hydrothermal geochemistry	85	
	6.7	Overcoming the kinetic barrier to carbon dioxide reduction .	86	
	6.8	Indications from mineralogy	105	
	6.9	Clues from metalloenzymes	111	
	6.10	Tensions across the membrane	114	
	6.11	Discussion	114	
	6.12	Conclusions	114	
	6.13	Summary	115	
		References	116	
7	Faci	ng Up to Chemical Realities: Life Did Not Begin at the		
-		wth Temperatures of Hyperthermophiles	127	
		ey L. Miller and Antonio Lazcano		
	7.1	Introduction	127	
	7.2	The antiquity of hyperthermophiles	127	
	7.3	Hyperthermophiles may be ancient, but they are hardly primitive	128	
	7.4	What was the physical environment of the origin of life?	129	
	7.5	High temperatures give higher reaction rates, but the lifetimes	100	
		of organic molecules are drastically reduced	130	
	7.6	Hyperthermophily may be a derived character	130	
	7.7	Conclusion	131	
	7.8	Summary	131	
		References	131	
	PARI	THREE Nucleic Acid-based Phylogenies	135	
8	Wer	e our Ancestors Actually Hyperthermophiles? Viewpoint of		
	a De	evil's Advocate	137	
	Patri	ck Forterre		
	8.1	Introduction	137	
	8.2	The conflict between primitiveness and hyperthermophily?	137	
	8.3	What does the universal tree of life say?	138	
	8.4	A perspective from comparative biochemistry	141	
	8.5	Conclusions	144	
	8.6	Summary	144	
	••••	References	144	
9	Hvn	erthermophilic and Mesophilic Origins of the		
-	Eukaryotic Genome			
		Eukaryotic Genome147James A. Lake, Ravi Jain, Jonathan Moore and Maria C. Rivera		
	9.1	Introduction	147	
	9.2	Prokaryotic diversity	147	
	9.3	Origin of the eukaryotes	148	

•

vii

•

		Using sequence inserts and operon organisation to map eukaryotic	
		origins	154
		Conclusions	159
		Summary	159
		References	159
	PART	FOUR Gene Exchange and Evolution	163
10		phering the Molecular Record for the Early Evolution of Life: Duplication and Horizontal Gene Transfer	165
	Lorra	ine Olendzenski and J. Peter Gogarten	
	10.1	Introduction	165
	10.2	Duplicated genes and rooted phylogenies	166
	10.3		166
	10.4	Conflicting molecular phylogenies	168
	10.5	Two distinct prokaryotic domains?	169
	10.6	Open questions	171
	10.7	Properties of the last common ancestor	172
	10.8	Conclusions	172
	10.9	Summary	173
		References	174
11	the L	al Gene Exchange, an Evolutionary Mechanism for Extending Upper or Lower Temperature Limits for Growth of	177
		oorganisms? A Hypothesis	1//
		en Wiegel	
		Evolution and horizontal gene transfer	177
	11.2	Overview of bacteria with an extended temperature range for	
		growth and a biphasic Arrhenius plot for growth	178
	11.3	Hypothesis	179
	11.4	Examples of gene products which support the hypothesis of the	
		two sets of genes	180
	11.5	Critical assessment of the hypothesis	181
	11.6	Conclusion	183
	11.7	Summary	183
		References	184
12	Evide	ence in Anaerobic Fungi of Transfer of Genes Between Them	
	from	Aerobic Fungi, Bacteria and Animal Hosts	187
		G. Ljungdahl, Xin-Liang Li and Huizhong Chen	
	12.1	Introduction	187
	12.2	Gene duplication	188
	12.3	Gene transfer between anaerobic fungi	191
	12.4	Genes of fungal origin	191
	12.5	Genes of bacterial origin	192
	12.6	Genes of animal origin	193

.

.

	12.7	Conclusions	194	
	12.8	Summary	195	
		References	195	
	PART	FIVE Enzyme-based Phylogenies	199	
13		Topoisomerases, Temperature Adaptation, and Early		
	Diver	sification of Life	201	
	Purific	cación López-García	·	
		Introduction	201	
		Homeostasis of DNA geometry	203	
	13.3	Gyrase and reverse gyrase: did early prokaryote diversification	207	
	13.4	correlate with adaptation to distinct temperature niches? Conclusions	212	
	13.4		212	
		References	213	
1.4	A	and ADNIA Constations, Fredhaling of a Tranklad Family	217	
14		oacyl-tRNA Syntetases: Evolution of a Troubled Family	217	
		R. Brown	017	
	14.1 14.2	Aminoacyl-tRNA synthetase structure and function	217 220	
	14.2	Rooting the universal tree Charging for glutamine, asparagine and lysine are the exceptions	220	
	14.4		224	
	14.5	Up-rooting the universal tree	226	
	14.6	Summary	228	
		References	228	
15		volutionary History of Carbamoyltransferases: Insights on the		
	Early	Evolution of the Last Universal Common Ancestor	231	
	Bernard Labedan and Anne Boyen			
	15.1		231	
	15.2		221	
	15.3	are evolutionarily related proteins Phylogenetic study of carbamoyltransferases	231 233	
	15.4	A possible scenario for the evolutionary history of	255	
		carbamoyltransferases	236	
	15.5	Conclusions	238	
	15.6	Summary	238	
		References	238	
	PART	six Enzyme Evolution	241	
16	Evolu	ition of the Histone Fold	243	
		een Sandman, Wenlian Zhu, Michael F. Summers ohn N. Reeve		
	16.1	Introduction	243	
	16.2	Archaeal histones	, 243	
	16.3	Eukaryal histones	249	

		5	249 250 251
		References	251
17	Comp	parative Enzymology as an Aid to Understanding Evolution	255
		el J. Danson, Rupert J. M. Russell, David W. Hough arry L. Taylor	
	17.1	Introduction and aims -	255
	17.2	Central metabolism withing the Archaea	256
	17.3	The enzymes of central metabolism	261
	17.4	Do archaeal enzymes represent the minimal functional unit?	262
	17.5 17.6	Does metabolite stability control the upper temperature limit of life? Conclusions and future trends in archaeal enzymology	263 264
	17.7	Summary	265
		References	265
18	Pyrop	phosphate-dependent Phosphofructokinases in Thermophilic	
		Nonthermophilic Microorganisms	269
	Hugh	W. Morgan and Ron S. Ronimus	
	18.1	Phosphoryl donors of phosphofructokinase and their distribution	269
	18.2	Phylogeny and evolution of the different types of PFK	271
	18.3	Phosphofructokinase activity in spirochaetes	273
	18.4	Conclusions	275
	18.5	Summary References	275 275
			215
	PART	SEVEN Membrane Evolution	279
19		ycerol-1-phosphate Dehydrogenase: A Key Enzyme in the	0 01
	Biosynthesis of Ether Phospholipids in Archaea		281
	Masateru Nishihara, Takayuki Kyuragi, Nobuhito Sone and Yosuke Koga		
	19.1	Introduction	281
	19.2	M. thermoautotrophicum G-1-P dehydrogenase	282
	19.3	GP dehydrogenase and glycerol kinase in other Archaea	282
	19.4	Conclusion	283
	19.5	Summary References	283 284
		Keleiences	204
20		the Common Ancestor of all Living Organisms to beukaryotic Cell	287
	Akihiko Yamagishi, Takahide Kon, Gen Takahashi and		
	Tairo Oshima		
	20.1	Introduction	287
	20.2	The last common ancestor commonote	287
	20.3	The process from the protoarchaebacteria to protoeukaryotic cells	290
	20.4	Conclusions	293

·.

_

İ

Con	itents		XI
	20.5	Summary References	294 294
	PART	ыснт Life at High Temperature	297
21	Prim	itive Coenzymes and Metabolites in Archaeal/Thermophilic	
	Meta	bolic Pathways	299
	R. M.	Daniel .	
	21.1	Introduction	299
	21.2	······································	299
	21.3	, , , ,	301
	21.4	NAD(P) stability and the role of non-haem iron proteins	303
	21.5	The stability of phosphorylated coenzymes and metabolites	305
	21.6 21.7	Conclusions Summary	306 307
	21.7	References	307
			507
22	3-Ph	osphoglycerate Kinase and Triose-phosphate Isomerase	
		Hyperthermophilic Archaea: Features of Biochemical	
	Ther	moadaptation	311
	Reinhard Hensel, Alexander Schramm, Daniel Hess and Rupert J. M. Russell		
	22.1	Introduction	311
	22.2	Quaternary structure of the PGK and TIM from mesophilic and	
		thermophilic Archaea	312
	22.3	Homology-based models for the subunit assembly of PGK and TIM	
		from the hyperthermophilic <i>M. fervidus</i> and <i>P. woesei</i>	313
	22.4 22.5	Thermoadaptation through oligomerisation – a common strategy? Following the direction of thermoadaptation – a hypothetical	318
		approach	318
	22.6		320
	22.7	Summary References	321 321
		Keleichices	321
23	The	Evolutionary Significance of the Metabolism of Tungsten by	
	Micr	oorganisms Growing at 100 °C	325
	Michael W. W. Adams		
	23.1	Introduction	325
	23.2	Role of tungsten in the metabolism of Pyrococcus furiosus	326
	23.3	Properties of the tungstoenzymes	327
	23.4	Tunsten- and molybdenum-containing isoenzymes	331
	23.5	Why tungsten and not molybdenum?	332
	23.6	Evolutionary considerations	333
	23.7		.33:
	23.8	•	330
		References	337

Index

339