Electron Microscopy Principles and Techniques for Biologists

John J. Bozzola, M.S., Ph.D.

Center for Electron Microscopy Southern Illinois University Carbondale, Illinois

Lonnie D. Russell, M.S., Ph.D.

Laboratory of Structural Biology Southern Illinois University, School of Medicine Carbondale, Illinois

JONES AND BARTLETT PUBLISHERS BOSTON

Contents

xv

xvii

Preface Acknowledgments

CHAPTER 1

CHAPTER I	
The Past, Present, and Future of Electron	
Microscopy	2
Historical Perspective	4
Development of the Electron Microscope	7
Development of Preparative Techniques	9
Contributions to Biology and the Future of	
Electron Microscopy	10
Journals Devoted Primarily to Electron	
Microscopy	10
Selected Journals Publishing Electron	
Micrographs	11
References	11

CHAPTER 2

UNAFIER 2	
Specimen Preparation for Transmission	
Electron Microscopy	14
Fixation	16
The Mechanism of Chemical Fixation	
for Electron Microscopy	16
Glutaraldehyde	16
Osmium Tetroxide	18
Selection of a Fixative and a Buffer	19
Fixative	19
Buffers	19
Obtaining and Preparing Buffered	
Glutaraldehyde Fixative	20
Obtaining and Preparing Osmium	
Fixative	21
Immersion and Perfusion Fixation	21
Immersion	22
Perfusion Fixation	23
Fixation Conditions	24
Popular Fixation Protocols Other	
Than Glutaraldehyde–Osmium	
Tetroxide	24
Karnovsky's Fixative	24
Osmium-reduced Ferrocyanide	25
Potassium Permanganate	25
Fixative Additives	25
Fixation of Plant Tissues	26
Washing	26
Dehydration	27

Use of Transitional Solvents	27
Infiltration of Resin	27
Embedding	28
Epon Embedding	28
Measuring Embedding Media	28
Mixing Embedding Media	29
Other Embedments and Their Use	29
Epoxy Resin 812	29
Araldite	29
Spurr's	30
LR White	30
Low Pressure Removal of Solvents	
and Air Bubbles	30
Curing of the Embedment	30
Embedding Containers	31
Embedding Labels	31
Removal of Tissue Supports	31
Special Tissue Preparative Needs	32
Cell Fractions	32
Tissue Culture Cells	33
Suitable Containers for Tissue Processing	35
Rapid Tissue Processing Protocols	35
Automatic Tissue Processors	36
Tissue Volume Changes During Specimen	
Preparation	36
Judging Adequate Specimen Preparation	36
References	37

40
42
42
42
44
45
46
46
47
48
48
49
49
50

Cryofracturing	50
Cryofracturing Procedure of Tanaka	51
Dry Fracturing	53
Replication Procedures	53
Negative Surface Replication Using	
Cellulose Acetate Film	54
Cellulose Acetate Negative	
Replication Procedure	54
Negative/Positive Replication Using	
Silicone, Resin	54
Silicone, Resin Positive/Negative	
Replication Procedure	54
Corrosion Casting of Animal	
Vasculatures	55
Corrosion Cast Replication	
Procedure	56
Specimen Mounting	56
Criteria for Selecting Specimen	
Adhesives	56
Specimen Coating for Conductivity	58
Sputter Coating Procedure	58
Estimation of Coating Thickness	59
Potential Problems Associated with	
Sputter Coating	60
Noncoating Techniques	60
Tannic Acid/Osmium Noncoating	
Technique	60
Specimen Storage	61
References	62

CHAPTER 4 Ultramicrotomy

Shaping the Specimen Block	66
Rough Trimming by Hand	66
Shaping the Block Using Razor	
Blades ,	66
Rough Trimming by Machine	67
The Mesa Trimming Procedure	70
Thick Sectioning	70
Fine Trimming	72
Types of Ultramicrotome Knives	72
Glass Knives	74
Preparing Glass Knives with a	
Commercial Knifemaker	75
Manually Crafted Knives	75
Breaking Glass Knives by Hand	75
Evaluation of Glass Knives	75
Attachment of Water Trough	
or Boat	77

Diamond and Sapphire Knives	78
Cleaning Diamond Knives	79
Histo Knives	80
Trough Fluids	80
Grids and Specimen Supports	80
Grids	80
Handling Grids	82
Support Films for Grids	83
Plastic Films	83
Pure Carbon Films	86
The Ultramicrotome and the Sectioning	
Process	86
Development of the Ultramicrotome	86
Basic Features of All Ultramicrotomes	87
The Sectioning Process	87
General Steps in Ultramicrotomy	87
Water Level Adjustment	89
Clearance Angle Adjustment	89
Knife Advancement	89
Specimen Orientation	90
Knife Contact	91
Ultrathin Sectioning	91
Section Retrieval	92
Collecting Serial Sections onto Single	
Hole or Slot Grids	94
Factors Affecting Sectioning	95
Methodical Sectioning	96
A Guide to Sectioning Problems and	
Causes	97
Cryoultramicrotomy	97
Dry Knife, Dry Retrieval Method	98
Dry Knife, Wet Retrieval Method	100
Example of the Use of Frozen	
Sections in an Immunocytochemical	
Localization Procedure	104
References	106

CHAPTER 5

Specimen Staining and Contrast Methods for Transmission Electron Microscopy Positive Staining The Physical Basis of Contrast Preembedding, Positive Staining with Uranyl Salts Preembedding Staining Procedure Postembedding Staining with Uranyl Salts Staining Trimmed Specimen Blocks

Staining Trimmed Specimen Blocks	
in Uranyl Acetate	112
Staining Ultrathin Sections with	
Uranyl Salts	112
Helpful Suggestions when Staining	113
Staining-Methods for Alcoholic	
Solutions of Uranyl Salts	115
Postembedding Lead Staining	115
Reynolds' Lead Citrate	115
Preparation and Use of Reynolds'	
Lead Citrate Stain	115
Preparing CO ₂ -Free Water	116
Other Methods for Lead Citrate	
Staining	117
Staining Many Grids	118
Negative Staining	118
Commonly Used Negative Stains	118
Preparation of Three Commonly	
Used Negative Stains	118
Negative Staining Procedures	120
Metal Shadowing Techniques	121
Metal Evaporation Procedures	121
Vacuum System	121
Methods for Metal and Carbon	
Evaporation	122
Some Applications of Metal	
Shadowing and Negative Staining	125
Making Height Measurements	
Using Metal Shadowing	125
Replication of Biological	
Surfaces for Transmission	
Electron Microscopy	126
Preparing Single-Stage Replicas	127
Preparing Two-Stage, Negative	
Replicas	128
Visualizing Macromolecules	129
DNA Spreading and Shadowing	
Technique	130
References	132

CHAPTER 6

The Transmission Electron Microscope	134
Visible Light, Electrons, and Lenses	136
Electromagnetic Radiation and the	
Diffraction Phenomenon	136
Effect of Diffraction on Resolution	137
Electrons, Waves, and Resolution	139
General Design of Lenses	140
Design of Electromagnetic Lenses	141

Defects in Lenses	143
Magnification	146
Design of the Transmission Electron	
Microscope	147
Comparison of Light Microscope to	
Transmission Electron Microscope	147
Basic Systems Making Up a	
Transmission Electron Microscope	147
Illuminating System	147
Specimen Manipulation System	156
Imaging System	158
Vacuum System	163
Vacuum Terminology	163
Vacuum Problems and Safety Features	168
Other Types of Vacuum Pumps	169
Preparing the Transmission Electron	
Microscope for Use	170
Alignment Theory	170
Alignment Practice	171
Major Operational Modes of the	
Transmission Electron Microscope	173
High Contrast	173
How to Obtain High Contrast	173
High Resolution	175
Darkfield	176
Diffraction	176
Diffraction Practices	177
Checking Performance	177
Alignment	177
Electrical Stability	178
Image Drift	178
Contamination	178
Magnification	179
Magnification Calibration	179
Resolution	180
Levels of Usage of the Transmission	
Electron Microscope	181
Shared Facilities	182
References	182

The Scanning Electron Microscope	184
Basic Systems of the SEM	186
Electron Optical and Beam	
Management Systems	187
Condenser Lenses 1 and 2	189
Final Condenser Lens	189
Dual Magnification Mode	190
Apertures and Depth of Field	192

Interaction of Electron Beam	
with Specimen	194
Specimen Manipulation	195
Electron Detector, Signal Processing,	
and Recording Systems	195
Signal Versus Noise	195
The Origin of Noise in the	
SEM	195
Secondary Electron Detector	195
Signal Processing	196
Some Specialized Features of the	
SEM	196
Image Recording	199
Films for Use in the SEM	199
Some Useful Features in Modern	
SEMs	199
Three Dimensionality of the SEM Image	199
Stereo Imaging with the SEM	201
Generating Two Micrographs with	
Separate Views	201
Using Tilt to Generate Stereo Views	
in the SEM	202
Merging Two Micrographs with	
Separate Views to Generate a Stereo	
Image	202
Preparing Stereo Images for	
Projection	203
Major Operational Modes of the SEM	204
High Resolution	204
Conditions for High Resolution	204
Great Depth of Field	205
Imaging Other Types of Specimen Signals	205
Backscattered Electrons	205
Backscattered Electron	
Detection	205
Types of Backscattered Electron	
Detectors	207
Important Considerations when	
Using Backscattered Imaging	
with Biological Specimens	207
Cathodoluminescence	208
One Type of Cathodoluminescence	200
Detector	208
Using Secondary and Backscattered	200
Electrons in Biological Studies	208
Specialized Instrumentation for Observing	200
Unfixed Tissues	210
Observation of Frozen Specimens	210
Observation of Fresh Specimens	210
References	213

CHAPTER 8

Production of the Electron Micrograph	214
Photographic Principles	216
General Steps in Producing an	
Electron Micrograph	216
Negative Recording Medium	216
Exposure Process in the SEM	217
Exposure Process in the TEM	217
Grain Versus Noise	218
Speed and Resolution	218
Improving Resolution and Contrast in	
TEM Negatives	219
Commercial Films, Handling,	
Developing, and Troubleshooting	219
Negative Recording Media for	
TEM	219
TEM Negative Media	219
Handling of Negative Materials and	
Processing	220
Standardization of Procedures	222
Problems with Negatives	222
Darkroom Printing	222
Work Prints and Final Prints	223
The Enlarger and Accessories	224
Printing Papers	225
Enlarging	226
Print Processing	227
Burning-in and Dodging	229
Techniques to Enhance Contrast	229
Matte and Glossy Electron	
Micrographs	229
Preparing Micrographs for Publication	230
The Final Print	230
Trimming Prints	230
Mounting Prints	230
Labeling Prints	231
Reproducing Prints	231
Slide Presentations	232
Poster Presentations	232
Making Montages	232
Determining Print Magnification	
from a Negative	232
References	233

Chapter 9

Immunocytochemistry	234
The Antigen-Antibody Reaction	236
Approaches to Labeling	237
Ultrastructural Tags	239

General Considerations in Performing an	
Immunocytochemical Experiment	243
Immunohistochemistry/	
Immunofluorescence	243
Obtaining and Applying the Primary	
Antibody	244
Obtaining the Secondary Antibody	245
Tissue Fixation	245
Preembedding or Postembedding	
Labeling	245
Embedding	246
Blocking	246
Staining	248
Controls	248
Adsorption	248
Use of Tag or Unlabeled	
Antibody	248
Omission of Primary or	
Secondary Antibodies	248
Use of Pre-Immune Sera	248
Dealing with Soluble Antigens	248
Multiple Labeling Option	249
Interpretation of Micrographs	249
References	250

CHAPTER 10 Enzyme Cytochemistry

Enzyme Cytochemistry	252
Basis of Enzyme Cytochemistry	254
Requirements for Performing Enzyme	
Cytochemistry	254
Preservation of Tissue Structure and	
Enzymatic Activity	255
Maximization of Reaction Conditions	255
Facilitation of Substrate Penetration	255
Use of Appropriate Controls	255
Visualization of Reaction Product	255
Trapping Agents	255
Marker Enzymes	256
A Typical Protocol	257
Examples of Cytochemistry for Selected	
Enzymes	258
References	260

CHAPTER 11

Autoradiography/Radioautography	262
Radioactivity	265
Emulsion Used in Autoradiography	266
How to Perform Autoradiography	267

The Experiment Protocol 269)
Administration of the Radioactive	
Substance and Tissue Preparation 269)
Light Microscope Autoradiography 269)
Application of Emulsion 269)
Exposure of the Autoradiograph 269)
Development of the Autoradiograph 270)
Staining of the Tissue 270)
Placement of the Exposed Tissue on	
Grids 271	l
Interpretation of Autoradiographs 271	l
A Typical Experiment Employing	
Autoradiography 272	2
References 275	5

CHAPTER 12

Miscellaneous Localization Techniques	278
Actin	280
Carbohydrates/Oligosaccharides	280
Using Lectins	280
Using Tannic Acid and Metals	280
Using a Modified PAS-Schiff	
Reaction	281
Using Colloidal Iron and Colloidal	
Thorium	281
Golgi Complex/Multivesicular Body	281
Glycogen/Membranes	281
Ions	281
Nucleic Acids (DNA/RNA)	281
Protein	283
Sterols	283
References	285

(Quantitative Electron Microscopy	286
	When to Use Stereology	289
	General Scheme of Stereology	289
	Parameters Measured and Symbols Used	
	in Stereology	290
,	Tissue Compartments or Spaces	290
4	Test Systems	291
	Basic Types of Determinations and	
	Associated Formulas	292
	Volume Determinations	292
	Volume Determination Methods	
	for Spherical Objects	294
	Volume Determinations for	
	Nonspherical Objects	294

Area Determinations	297
Surface Density and Surface-to-	
Volume Determinations	298
Numerical Density Determinations	299
Assumptions and Conditions	299
Multiple Stage Sampling	300
How Much Data from Test Systems is	
Needed?	301
Computer-Assisted Stereology	301
A Typical Published Report	301
References	303

CHAPTER 14

Freeze Fracturing Replication306

How to Produce a Replica	311
Interpretation of Freeze Fracture Replicas	313
Finding a Membrane	313
Orienting the Micrograph so that the	
Shading of IMPs is from Below	314
Determining Which Membrane is	
being Viewed	317
Determining Whether the Membrane	
Face being Viewed is a P-Face or an	
E-Face	317
Complementary Replicas	319
Freeze Etching	319
Quick Freeze, Deep Etch, Rotary Shadow	
Techniques	320
Freeze Fracture Cytochemistry	320
Problems and Artifacts	323
References	328

CHAPTER 15

The Analytical Electron Microscope	330
Interaction of an Electron Beam with a	
Specimen ·	332
Microscopes Used for Detecting Analytical	
Signals	333
X-Ray Microanalysis	334
Continuum (Bremsstrahlung) X Rays	335
Characteristic X Rays	336
The Filling of Inner Orbital	
Electrons is an Orderly Process	336
X-Ray Microanalysis may be	
Conducted to Achieve Several Goals	337
Equipment for Detecting X Rays	337
Information Obtainable Using X-Ray	
Analysis	340

Specimen Preparation for X-Ray	
Microanalysis	340
Bulk Samples	340
The Challenge: Quantitative Ana	lysis
of Bulk Specimens	341
Single Cells, Isolated Organelles	,
Liquid Secretions or Extracts	342
Sectioned Materials	342
Some Precautions with Sectioned	d
Materials for X-Ray Microanalys	sis 343
Electron Energy Loss Spectroscopy	
(EELS)	344
Electron Diffraction	347
Formation of Diffraction Pattern	is 348
Single Crystal Versus Polycrysta	lline
Specimens	349
Determination of Spacings in a	
Crystalline Lattice	350
Determination of Camera	
Constant (λL)	351
Types of Diffraction Modes	353
Selected Area Diffraction (S	SAD) 353
Microdiffraction	354
Other Types of Diffraction	355
References	355

-- --

CHAPTER 16

Intermediate and High Voltage Micros-
copy358Historical Perspective360Advantages of High Voltage Microscopy360Contributions of High Voltage363Microscopy363References367

CHAPTER 17

Tracers	368
Some Specific Tracers in Use	371
Cationic and Native Ferritin	371
Lanthanum	372
Horseradish Perioxidase	373
Lactoperoxidase	373
Ruthenium	374
References	375

Interpretation of Micrographs	376
Introduction to Viewing Biological	
Electron Micrographs	378

ŧ

Interpretation of Normal Tissue Structure	379
Magnification and Resolution	379
Membranes	379
Shape, Kinds, and Number of	
Structures	380
Fixation Artifacts	386
Dehydration, Infiltration, and	
Embedding Artifacts	390
Sectioning Artifacts	390
Staining Artifacts	394
Microscope Artifacts	396
Photographic Artifacts	398
Interpreting Dynamic Processes from	
Static Images	401
Estimation of Micrograph Magnification	401
References	404
0 - 10	
Chapter 19	407
Survey of Biological Ultrastructure	406
The Cell Surface	408
The Lipid Bilayer of the	
Plasmalemma	409
The Glycocalyx	410
Cell Junctions	411
Cell Surface Specializations	419
The Cytoskeleton	426
Microtubules	426
Microfilaments	428
Intermediate Filaments	429
The Nucleus	430
The Nuclear Envelope	431
Chromatin	433
The Nucleolus	434
Dividing Cells	436
The Synaptonemal Complex	440
Mitochondria	441
Protein Synthetic and Secretory Structures	446
Free Ribosomes	446
Membrane Bound Ribosomes	447
Rough Endoplasmic Reticulum	448
Smooth Endoplasmic Reticulum	450
The Golgi Apparatus	451
Secretory Products	454
Centrioles	456
Cilia and Flagella	457
Cilia	457
Flagella	457
The Lysosomal System	460
Lysosomes	460

Multivesicular Bodies	463
Microbodies	467
Annulate Lamellae	468
Cell Inclusions	469
Glycogen	469
Lipid	471
Crystalloids	473
Extracellular Material	474
Collagen	474
Basal Lamina	475
Matrix of Bone and Cartilage	476
Special Features of Plant Tissues	478
Chloroplasts	478
Vacuoles	479
The Cell Wall	480
Bacteria	481
Algae, Fungi, Yeast, and Protozoa	483
Viruses	487
References	489

Safety in the Electron Microscope Laboratory	496
Personal Safety in the Laboratory	498
Safety Apparatus and Safe Practices	498
Pathogens and Radioisotopes	500
Chemical Safety	501
Handling Chemicals in a Safe Manner	501
Storage of Chemicals	502
Storage Recommendations	502
Some Chemicals Commonly Used in	
Electron Microscopy	503
Disposal of Spent Chemicals	504
Safety Monitoring	50
Cleaning Up Hazardous Spills	50.
Exposure to Chemicals	500
New OSHA Standard	507
Fire Safety	502
Preventing Fires	50
Stopping Fires	508
Classes of Fires and Proper	
Extinguishers	508
Plan of Action for Fire Fighting	509
Electrical Safety	509
Darkrooms	509
Vacuum Evaporators and Sputter	
Coaters	50
Proper Grounding of Equipment	50

Servicing of Electron Microscopes	
and Small Equipment	509
First Aid for Shock Victims	510
Physical and Mechanical Hazards	510
Sharp Objects	510
Critical Point Dryers (CPDs)	510
Vacuum Pumps	510
Vacuum Evaporators	511
Sputter Coaters	511
Ōvens	511
Cryogenic Gases and Vacuum	
Dewars	511
Compressed Gas Safety	512
Microwave Ovens	514
Radiation	514

.

.

Centrifuges	514
Pipetting	515
Falls	515
Training and Orientation Programs	515
Hotlines and Other Resources	516
Telephone Numbers	516
Addresses	516
References	518
APPENDIX A	
Review Questions and Problems	521
APPENDIX B	
Standard Units of Measurement	531
Index	533