Data Analysis in Vegetation Ecology

Otto Wildi

 WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland

Contents

Preface						
List of Figures List of Tables						
						1
2	Pat	5				
	2.1	Patter	5			
	2.2	Interp	retation of patterns	9		
	2.3	Sampl	ing for pattern recognition	11		
		2.3.1	Getting a sample	11		
		2.3.2	Organizing the data	14		
3	Transformation			17		
	3.1	Data t	17			
	3.2	Scalar	transformation and the species enigma	19		
	3.3	Vector	r transformation	21		
	3.4	Examp	ole: Transformation of plant cover data	23		
4	Multivariate Comparison			25		
	4.1	Resem	ıblance in multivariate space	25		
	4.2	Geome	etric approach	27		
	4.3	Contin	ngency testing	29		
	4.4	Produc	ct moments	30		
	4.5	The re	semblance matrix	32		
	4.6	Assess	sing the quality of classifications	33		
5	Ordination			35		
	5.1	Why o	rdination?	3.5		

vi CONTENTS

	5.2				
	5.3 Principal coordinates analysis (PCOA)				
	5.4	Correspondence analysis (CA)			
	5.5	The ho	orseshoe or arch effect	47	
		5.5.1	Origin and remedies	47	
		5.5.2	Comparing DCA, FSPA and NMDS	49	
	5.6	Rankir	ng by orthogonal components	51	
		5.6.1	Method	51	
		5.6.2	A numerical example	53	
		5.6.3	A sampling design based on RANK (example)	55	
6	Classification				
	6.1	Group	structures	59	
	6.2	Linkag	ge clustering	62	
	6.3	Minim	um-variance clustering	64	
	6.4	Averag	ge-linkage clustering: UPGMA, WPGMA, UPGMC and WPGMC	66	
	6.5	Formi	ng groups	67	
	6.6	Struct	ured synoptic tables	69	
		6.6.1	The aim of ordering tables	69	
		6.6.2	Steps involved	70	
		6.6.3	Example: Ordering Ellenberg's data	72	
7	Joir	ning E	cological Patterns	75	
	7.1	Patter	n and ecological response	75	
	7.2	Analys	sis of variance	77	
		7.2.1	Variance testing	77	
		7.2.2	Variance ranking	79	
		7.2.3	How to weight cover abundance (example)	80	
	7.3	Correla	ating resemblance matrices	84	
		7.3.1	The Mantel test	84	
		7.3.2	Correlograms: Moran's I	86	
		7.3.3	Spatial dependence: Schlaenggli data revisited	89	
	7.4	Contir	ngency tables	92	
	7.5	Constr	rained ordination	96	
8	Stat	ic Exp	olanatory Modelling	101	
	8.1	Predic	tive or explanatory?	101	
	8.2	The Ba	ayes probability model	102	
		8.2.1	The discrete model	104	

		vii		
		8.2.2 T	he continuous model	105
	8.3	Predictin	g wetland vegetation (example)	106
9	Asse	ssing V	egetation Change in Time	111
	9.1	Coping w	ith time	111
	9.2	Rate of c	112	
	9.3	Markov m	115	
	9.4	Space-for	r-time substitution	122
		9.4.1 P	rinciple and method	122
		9.4.2 T	he Swiss National Park succession (example)	125
	9.5	Dynamics	s in pollen diagrams (example)	127
10	Dynamic Modelling			133
	-	Simulatin	135	
	10.2	Including	space processes	141
	10.3	Processes	s in the Swiss National Park (SNP)	142
		10.3.1 T	he temporal model	142
		10.3.2 T	he spatial model	145
			imulation results	146
11	Large Data Sets: Wetland Patterns			151
	-		a sets differ	151
		•	iology revisited	153
		=	ing outliers	156
			g species with new attributes	158
			poptic tables?	162
12	Swi	169		
	12.1	169		
	12.2	Structure	of the data set	170
	12.3	Methods		172
	12.4	Selected	questions	175

12.4.1 Is the similarity pattern discrete or continuous?

12.4.5 Is the tree species pattern expected to change?

12.4.3 Does the vegetation pattern reflect the environmental

12.4.2 Is there a scale effect from plot size?

12.4.4 Is tree species distribution man-made?

conditions?

12.5 Conclusions

175

176

177

178

184

184

viii CONTENTS

Appendix A On Using Software	189
A.1 Spreadsheets	189
A.2 Databases	190
A.3 Software for multivariate analysis	193
Appendix B Data Sets Used	193
References	195
Index	205