This volume is dedicated

to

George Porter

The Rt Hon The Lord Porter of Luddenham OM FRS

Nobel Laureate

1920 - 2002

a fine man and a great scientist

م

CONTENTS

.

٠

About the authors				
Preface				
1	Photosynthesis and photoconversion	1		
	J. Barber and M. D. Archer			
1.1	Introduction	1		
1.2	Evolution and progress of ideas	12		
1.3	The 'blue print' of the photosynthetic apparatus	18		
1.4	Energy-storage efficiency of photosynthesis	28		
1.5	Energy and chemicals from biomass	34		
2	Light absorption and harvesting A. Holzwarth	43		
2.1	Introduction	43		
2.2	Theoretical aspects of energy transfer in photosynthetic			
	antennae	47		
2.3	General principles of organisation of light-harvesting antennae	51		
2.4	Structural and functional basis for light absorption and harvesting	53		
2.5	Concluding remarks	81		
3	Electron transfer in photosynthesis W. Leibl and P. Mathis	117		
3.1	Biological electron transfer	119		
3.2	Electron transfer in anoxygenic photosynthesis	123		
3.3	Electron transfer in oxygenic photosynthesis	141		
3.4	Photosynthetic electron transfer: importance of kinetics	163		
4	Photosynthetic carbon assimilation G. E. Edwards and D. A. Walker	189		
4.1	Environmental and metabolic role	189		
4.2	Chloroplast and cell	191		
4.3	C ₃ photosynthesis in its relation to the photochemistry	192		

..

V111	Contents	
4.4	The Calvin cycle	194
4.5	Autocatalysis: adding to the triose phosphate pool	203
4.6	Photorespiration	204
4.7	CO ₂ -concentrating mechanisms	209
4.8	Survival and efficiencies of photosynthesis	216
5	Regulation of photosynthesis in higher plants	221
	D. Godde and J. F. Bornman	
5.1	Anatomy, morphology and genetic basis of	
	photosynthesis in higher plants	222
5. <u>2</u>	Adaptation of photosynthetic electron transport to	
	excess irradiance	226
5.3	Regulation of photosynthetic electron transport	
	by CO ₂ and oxygen	238
5.4	Feedback regulation of photosynthesis	239
5.5	Factors limiting plant growth	242
5.6	Possible plant responses to future climate changes	250
5.7	Improving plant biomass	258
6	The role of aquatic photosynthesis in solar energy	
	conversion: a geoevolutionary perspective	287
	P. G. Falkowski, R. Geider and J. A. Raven	
6 .1	Introduction	287
6.2	From the origin of life to the evolution of oxygenic	
	photosynthesis	288
6.3	Photophysiological adaptations to aquatic environments	298
6.4	Quantum yields of photosynthesis in the ocean	306
6.5	Net primary production in the contemporary ocean	307
6.6	Biogeochemical controls and consequences	311
7	Useful products from algal photosynthesis	323
	R. Martinez and Z. Dubinsky	
7.1	Introduction	323
7.2		326
7.3	Macroalgae	353
7.4	Concluding remarks	366

	Contents	• ix
8	Hydrogen production by photosynthetic microorganisms V. A. Boichenko, E. Greenbaum and M. Seibert	397
8.1	Photobiological hydrogen production—a useful evolutionary	
	oddity	397
8.2	Distribution and activity of H ₂ photoproducers	400
8.3	Structure and mechanism of the enzymes catalysing H_2	
	production	410
8.4	Metabolic versatility and conditions for hydrogen evolution	418
8.5		
	photoproduction	422
8.6	Hydrogen production biotechnology	425
8.7	Future prospects	432
9	Photoconversion and energy crops	453
	M. J. Bullard	
9.1	Introduction	453
9.2	Why grow energy crops?	455
9.3	The nature of biomass	475
9.4	Physiological and agronomic basis of energy capture and the	
	selection of appropriate energy crop species	484
9.5	Conclusions	504
10	The production of biofuels by thermal chemical	
	processing of biomass	521
	A. V. Bridgwater and K. Maniatis	
10.1	Introduction	522
10.2	Thermal conversion processes	527
10.3	Gasification	529
10.4	Pyrolysis	564
10.5	Co-processing	591
10.6	Economics of thermal conversion systems for electricity production	599
10.7	Barriers	602
10.8	Conclusions	604

-

x	Contents	
11	Photosynthesis and the global carbon cycle D. Schimel	613
11.1	The contemporary carbon cycle	614
11.2	The modern carbon budget	615
11.3	Photosynthesis as a carbon storage process	618
11.4	Assimilation and respiration	619
11.5	CO ₂ fertilisation	621
11.6	Global warming and the carbon cycle	622
12	Management of terrestrial vegetation to mitigate climate change R. Tipper and R. Carr	629
12.1	Potential carbon management activities in the forestry and land use sectors	629
12.2	Forests and land use in the Kyoto Protocol	636
12.3	Climate change management, carbon assets and liabilities	639
12.4	Experiences and issues arising from land use and forestry	
	projects designed to mitigate greenhouse gas emissions	640
12.5	Conclusions	643
13	Biotechnology: its impact and future prospects D. J. Murphy	649
13.1	Introduction	649
13.2	Background	652
13.3	Agbiotech: current applications	663
\$13.4	Transgenic crops: the future	683
13.5	Challenges for transgenic crops	703
13.6	Developing new crops	715
13.7	Future directions for agricultural biotechnology	719
13.8	Conclusions	726
	Appendices	741
I	Conversion Factors	741
II	Acronyms and Abbreviations	742
III	List of Symbols	745
	Index	747

د