Marschner's Mineral Nutrition of Higher Plants Third Edition

Petra Marschner

School of Agriculture, Food and Wine The University of Adelaide Australia

Contents

Foreword	v
Preface to First Edition	vii
Preface to Second Edition	ix
Contributing Authors	xi

Part I Nutritional Physiology

1. Introduction, Definition and Classification of Nutrients

Ernest Kirkby

1.1 General	3
1.2 Essential Elements for Plant Growth	3
1.3 Biochemical Behaviour and Physiological	
Functions of Elements in Plants	4

2. Ion Uptake Mechanisms of Individual Cells and Roots: Short-distance Transport

Philip White

2.1 General	7
2.2 Pathway of Solutes from the External	
Solution into Root Cells	8
2.3 Composition of Biological Membranes	10
2.4 Solute Transport Across Membranes	13
2.5 Factors Affecting Ion Uptake by Roots	21
2.6 Uptake of Ions and Water along the	
Root Axis	39
2.7 Radial Transport of Ions and Water	
Across the Root	41
2.8 Release of Ions into the Xylem	43
2.9 Factors Affecting Ion Release into the	
Xylem and Exudation Rate	44

3. Long-distance Transport in the Xylem and Phloem

Philip White

3.1 General	49
3.2 Xylem Transport	50
3.3 Phloem Transport	58

	3.4 Relative Importance of Phloem and Xylem for Long-distance Transport of Nutrients3.5 Remobilization of Nutrients	62 66
4.	Uptake and Release of Elements by Leaves and Other Aerial Plant Parts	
	Thomas Eichert and Victoria Fernández	
	4.1 General 4.2 Uptake and Release of Gases and Other	71
	Volatile Compounds Through Stomata	71
	4.3 Uptake of Solutes	74
	4.4 Foliar Application of Nutrients	78
	4.5 Leaching of Elements from Leaves	82
	4.6 Ecological Importance of Uptake and Leaching of Solutes from Leaves	83
5.	Mineral Nutrition, Yield and Source–Sink Relationships	
	Christof Engels, Ernest Kirkby and Philip White	
	5.1 General	85
	5.2 Relationships between Nutrient Supply	
	and Yield	86
	5.3 Photosynthetic Activity and Related	
	Processes	87
	5.4 Photosynthetic Area	102
	5.5 Respiration and Oxidative	40-
	Phosphorylation	105
	5.6 Phloem Transport of Assimilates and its	107
	Regulation 5.7 Sink Formation	113
	5.8 Sink Activity	117
	5.9 Role of Phytohormones in the Regulation	,
	of the Sink–Source Relationships	120
	5.10 Source and Sink Limitations on Yield	131

6. Functions of Macronutrients

Malcolm Hawkesford, Walter Horst, Thomas Kichey, Hans Lambers, Jan Schjoerring, Inge Skrumsager Møller, Philip White

6.1 Nitrogen	135
6.2 Sulphur	151

6.3 Phosphorus	158
6.4 Magnesium	165
6.5 Calcium	171
6.6 Potassium	178

7. Function of Nutrients: Micronutrients

Martin Broadley, Patrick Brown, Ismail Cakmak, Zed Rengel and Fangjie Zhao

7.1 Iron	191
7.2 Manganese	200
7.3 Copper	206
7.4 Zinc	212
7.5 Nickel	223
7.6 Molybdenum	226
7.7 Boron	233
7.8 Chlorine	243

8. Beneficial Elements

Martin Broadley, Patrick Brown, Ismail Cakmak, Jian Feng Ma, Zed Rengel and Fangjie Zhao

8.1 Definition	249
8.2 Sodium	249
8.3 Silicon	257
8.4 Cobalt	261
8.5 Selenium	263
8.6 Aluminium	268
8.7 Other Elements	268

9. Nutrition and Quality

Franz Wiesler

•

9.1 Introduction	271
9.2 Nutrition and Appearance	272
9.3 Nutrition and Chemical Composition	273

10. Relationship between Nutrition, Plant Diseases and Pests

Don Huber, Volker Römheld and Markus Weinmann

10.1	General	283
10.2	Relationship between Susceptibility and	
	Nutritional Status of Plants	284
10.3	Fungal Diseases	285
10.4	Bacterial and Viral Diseases	291
10.5	Soil-borne Fungal and Bacterial Diseases	293
10.6	Pests	295
10.7	Direct and Indirect Effects of Fertilizer	
	Application on the Performance of	
	Plants and Their Parasites	297

8 11. Diagnosis of Deficiency and

- **Toxicity of Nutrients**
- Volker Römheld

11.1 General	299
11.2 Nutrient Supply and Growth Response	299
11.3 Diagnosis of Nutritional Disorders by	
Visible Symptoms	300
11.4 Plant Analysis	301
11.5 Histochemical and Biochemical Methods	310
11.6 Plant Analysis versus Soil Analysis	311

Part II

Plant-Soil Relationships

12. Nutrient Availability in Soils

Petra Marschner and Zed Rengel

12.1 General	315
12.2 Chemical Soil Analysis	315
12.3 Movement of Nutrients to the Root	
Surface	316
12.4 Role of Root Density	324
12.5 Nutrient Availability and Distribution	
of Water in Soils	325
12.6 Role of Soil Structure	326
12.7 Intensity/Quantity Ratio, Plant Factors	
and Consequences for Soil Testing	328

13. Effect of Internal and External Factors on Root Growth and Development

Jonathan Lynch, Petra Marschner and Zed Rengel

13.1 General	331
13.2 Carbohydrate Supply	331
13.3 Root Development	332
13.4 Soil Chemical Factors	334
13.5 Soil Organisms	340
13.6 Soil Physical Factors	342
13.7 Shoot/Root Ratio	345

14. Rhizosphere Chemistry in Relation to Plant Nutrition

Günter Neumann, Volker Römheld

14.1 General	347
14.2 Spatial Extent of the Rhizosphere	349
14.3 Inorganic Elements in the Rhizosphere	350
14.4 Rhizosphere pH	353
14.5 Redox Potential and Reducing Processes	359
14.6 Rhizodeposition and Root Exudates	360

15. Rhizosphere Biology

Petra Marschner

15.1 General	369
15.2 Rhizosphere Microorganisms	369
15.3 Mycorrhiza	373

16. Nitrogen Fixation

Jim Cooper and Heinrich Scherer

16.1 General	389
16.2 Biological Nitrogen-fixing Systems	389
16.3 Biochemistry of Nitrogen Fixation	390
16.4 Symbiotic Systems	392
16.5 Amounts of N Fixed by Legumes, and its	
Transfer to Other Plants in Mixed	
Stands	405
16.6 Significance of Free-living and Associative	
Nitrogen Fixation	407
16.7 Outlook	408

17. Adaptation of Plants to Adverse Chemical Soil Conditions

Eckhard George, Walter Horst and Elke Neumann

.

17.1 Natural Vegetation	409
17.2 High-input versus Low-input Approach	410

17.3 Acid Mineral Soils	417
17.4 Waterlogged and Flooded Soils	430
17.5 Calcareous and Alkaline Soils	444
17.6 Saline Soils	455
18. Nutrient and Carbon Fluxes in Terrestrial Agro-Ecosystems	
Andreas Buerkert, Rainer Joergensen, Bernard Ludwig and Eva Schlecht	
18.1 Microbiological Factors Determining	
Carbon and Nitrogen Emissions	473
18.2 Effects of Organic Soil Amendments on	
Emissions	475
18.3 Effects of pH, Soil Water Content and	
Temperature on Matter Turnover	475
18.4 Global Warming Effects	476
18.5 Plant-animal Interactions Affecting	
Nutrient Fluxes at Different Scales	476
18.6 Modelling Approaches in Matter Fluxes	482

-

References	483
Index	645

~-