Abiotic Stresses

Plant Resistance

Through Breeding

and Molecular Approaches

M. Ashraf, PhD
P. J. C. Harris, PhD

Editors

Food Products Press®
An Imprint of The Haworth Press, Inc.
New York • London • Oxford
PART I: GENERAL OVERVIEW

Chapter 1. Stress Environments and Their Impact on Crop Production 3
 Shafiq-ur-Rehman
 P. J. C. Harris
 M. Ashraf

Introduction 3
Biotic and Abiotic Stresses 4
Multiple and Variable Stresses and Tolerance 5
Abiotic Stress Symptoms 5
Major Abiotic Stresses Limiting Crop Yield 6
Crop Production in Stressful Conditions 11
Future Prospects 15

Chapter 2. Breeding for Stress Resistance: General Principles 19
 Mervyn O. Humphreys
 Michael W. Humphreys

Introduction 19
Breeding for Improved Stress Resistance 21
The Genetics of Abiotic Stress Tolerance 23
Mechanisms of Stress Resistance 30
The Role of Genetic Engineering in Breeding: Implications and Limitations 37
Conclusion 39
Chapter 3. Use of Genetic Engineering and Molecular Biology Approaches for Crop Improvement for Stress Environments

Viswanathan Chinnusamy
Liming Xiong
Jian-Kang Zhu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>Osmolytes/Osmoprotectants</td>
<td>49</td>
</tr>
<tr>
<td>Oxidative-Stress Tolerance</td>
<td>64</td>
</tr>
<tr>
<td>Stress Proteins</td>
<td>67</td>
</tr>
<tr>
<td>Cellular Membrane Stability</td>
<td>76</td>
</tr>
<tr>
<td>Salt-Stress Tolerance: Ion Homeostasis</td>
<td>78</td>
</tr>
<tr>
<td>Water Uptake and Transpiration</td>
<td>81</td>
</tr>
<tr>
<td>Cell-Wall Elasticity</td>
<td>84</td>
</tr>
<tr>
<td>Marker-Assisted Selection</td>
<td>84</td>
</tr>
<tr>
<td>Conclusions and Future Perspectives</td>
<td>89</td>
</tr>
</tbody>
</table>

Chapter 4. Genome Mapping and Its Implications for Improving Stress Resistance in Plants

Nguyen Thi Vinh
Andrew H. Paterson

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Impact of Drought, Salinity, and Acid Soil Conditions</td>
<td>109</td>
</tr>
<tr>
<td>for World Agriculture</td>
<td></td>
</tr>
<tr>
<td>Selection of Stress-Tolerant Crop Cultivars</td>
<td>112</td>
</tr>
<tr>
<td>Application of DNA Markers to Improve Stress Tolerance</td>
<td>113</td>
</tr>
<tr>
<td>Conclusion</td>
<td>118</td>
</tr>
</tbody>
</table>

Chapter 5. Breeding for Salinity Tolerance

Rajinder S. Malhotra
Thomas Blake

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>125</td>
</tr>
<tr>
<td>The Problem of Salinization</td>
<td>125</td>
</tr>
<tr>
<td>Mechanisms of Salinity Resistance</td>
<td>128</td>
</tr>
<tr>
<td>Artificial Selection for Salinity Tolerance</td>
<td>130</td>
</tr>
<tr>
<td>Sources of Genetic Variation for Salinity Resistance</td>
<td>134</td>
</tr>
<tr>
<td>Classical Genetics and Marker-Assisted Selection</td>
<td>135</td>
</tr>
<tr>
<td>Genetic Engineering for Salinity Resistance</td>
<td>138</td>
</tr>
<tr>
<td>Conclusion</td>
<td>138</td>
</tr>
</tbody>
</table>
Mechanisms Governing Nitrogen Efficiency 250
Breeding Genotypes for Greater Nutrient Efficiency 254
Conclusion 258

Chapter 10. Genetic Improvements of Tolerance to High Temperature 277
Catherine J. Howarth

Introduction 277
High-Temperature-Induced Changes in Gene Expression 281
Thermotolerance 284
Assessment of High-Temperature Tolerance 287
Future Prospects for Breeding for Tolerance to High-Temperature Stress 291

Chapter 11. Breeding for Cold Tolerance 301
Pedro Revilla
Ana Butrón
M. Elena Cartea
Rosa Ana Malvar
Amando Ordás

Introduction 301
Sources of Resistance 319
Inheritance 321
Breeding Programs 326
Conclusion 347
Appendix: Sources of Germplasm for Cold Tolerance 349

PART II: BREEDING FOR ABIOTIC STRESS TOLERANCE IN INDIVIDUAL CROPS

Chapter 12. Breeding for Abiotic Stress Tolerance in Wheat 401
Wolfgang H. Pfeiffer
Richard M. Trethowan
Maarten van Ginkel
Ivan Ortiz-Monasterio
Sanjaya Rajaram

Introduction 401
Breeding Wheat for Tolerance to Moisture Stress 404
Breeding Wheat for Tolerance to Heat Stress
Breeding for Tolerance to Cold-Temperature Stress in Wheat
Breeding for Tolerance to Waterlogging Stress in Wheat
Breeding for Micronutrient Stresses in Wheat

Chapter 13. Breeding for Abiotic Stress Tolerance in Barley

Sakti Jana
Ron W. Wilen

Introduction
Genetic Architecture of Barley
Selection Criteria for Tolerance to Environmental Stresses
Selection Techniques for Enhancing Tolerance to Environmental Stresses
Sources of Variation for Barley Improvement Under Stress Conditions
Breeding for Stress Tolerance
Future Trends

Chapter 14. Breeding for Abiotic Stress Tolerance in Rice

Glen B. Gregorio
Gloria S. Cabuslay

Introduction
Genetic Variability and Sources of Tolerance
Screening Methods for Drought Tolerance
Mechanisms of Drought Tolerance
Genetics of Tolerance
Prebreeding Research to Improve Donor Germplasm
Achievements in Germplasm Improvement
Toward the Development of Molecular Marker-Assisted Selection (MAS)