Spatial Optimization for Managed Ecosystems

John Hof and Michael Bevers

CONTENTS

<i>3671</i>	es Lanois Tolewola	ΥI
Prej	face	xix
1	Introduction	1
	Viewpoint	1
	Organization	2
	Methods	5
	Solvability of (0-1) Integer Programs	6
	Solvability of Nonlinear Programs	7
	A Final Introductory Note	8
PA!	RT I Static Spatial Relationships	11
2	A Cellular Model of Wildlife Habitat Spatial Relationships	14
	Edge Effects	16
	Wildlife Habitat Fragmentation Effects	18
	Wildlife Habitat Size Thresholds	22
	An Example	22
	The Problem	22
	Results	24
	Discussion	28
	Appendix	31
3	A Geometric Model of Wildlife Habitat Spatial Relationships	35
	Spatial Effects	36
	An Example	36
	Results	40
	Discussion	44

viii Contents

4	Spatial Supply-Demand Equilibrium: A Recreation Example	46
	The Travel Cost Model	46
	The Case of More Than One Proposed Site	47
	A Spatial Recreation Allocation Model	48
	An Example	52
	The Problem	52
	Results	55
	Discussion	58
PAR	Γ II Spatial Autocorrelation	59
	Chance-Constrained Programming	60
	Individual Chance Constraints	60
	Joint Probability Chance Constraint	61
	Total Probability Chance Constraint	62
	Chance-Maximizing Programs	63
	MAXMIN Chance-Maximizing Programming	63
	Joint Probability Chance-Maximizing Programm	_
	Total Probability Chance-Maximizing Programn	_
	Approximation of the CDF	66
5	A Cellular Timber Model with Spatial Autocorrelation	68
	An Example	69
	The Problem	69
	Results	73
	Discussion	80
6	A Geometric Wildlife Model with Spatial Autocorrelation	
	and Habitat Connectivity	81
	Theory	82
	Connectivity	82
	Spatial Autocorrelation	83
	Chance Maximization	84
	Optimization	84
	Circles	85
	Rectangles	87
	An Example	90
	The Problem	90
	Results	91
	Discussion	97
7	Pragmatic Approaches to Handling Risk and Uncertainty	99
	The Problem	90

Contents ix

		Post-Optimization Calculations An Example Row-Total Variance Reduction	100 101 107
PAR	тш	Dynamic Movement	113
		Methods	114
8	A Çe	llular Model of Wildlife Population Growth and Dispersal	118
		The Model An Example The Problem Results Continuous Choice Variables Results Discussion	119 122 122 124 129 130
9	The	Black-Footed Ferret: A Case Study	135
		Spatial Optimization Model Ferret Reintroduction in South Dakota Spatial Definition Ferret Dispersal Net Population Growth Rate Ferret Releases Ferret Carrying Capacity Model Results	136 141 142 142 143 143 144
10	A Ce	cllular Model of Pest Management The Model An Example The Problem Results Discussion	153 154 159 159 160
11	A No	ested-Schedule Model of Stormflow	170
		The Spatial Optimization Approach Two Examples Results Discussion	171 176 181 184
PART IV Diversity and Sustainability		187	
12	Spec	ties Richness Objective Functions	191
		Determining the Optimal Steady State	192

x Contents

	A Steady-State Example	195
	Results	196
	Allocation over Time and Space	201
	Results	203
	Appendix	205
	Declining Monotonicity of Natural Logarithm	
	Transformations	206
	The Logistic Distribution	₹ 207
13	Sustainability of Species Richness	208
	The Modeling Approach	208
	Objective Functions	209
	A Coastal Douglas-fir Case Study	212
	Linear Approximation of Objective Functions	213
	Model Reduction	215
	Sensitivity to Minimum Harvest Age	215
	Sensitivity to Planning Horizon Length	221
	Accounting for Mortality	222
	Single-Species Emphasis	223
	A New Definition for a Regulated Forest	224
	Appendix	227
14	Synthesis	230
	An Adaptive Management Context	231
	Simulation Versus Optimization	234
References		
Index		