The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen and Phosphorus

. . .

HENRY G. HEAL The Queen's University of Belfast, Northern Ireland

ACADEMIC PRESS

A Subsidiary of Harcourt Brace Jovanovich, Publishers

London • New York • Toronto • Sydney • San Francisco

Contents

Preface

Chapter 1. Status, nomenclature, and methods of synthesis

- I. Introduction, 1
 - A. Inorganic heterocycles: a modern perspective, 1
 - B. The importance of inorganic heterocyclics, 3
- II. Nomenclature, 4
- III. Methods of synthesis, 8
 - A. Introduction, 8
 - B. Direct combination of the ring-forming elements, 9
 - C. Addition polymerization, 9
 - D. Heterofunctional condensations, 9
 - E. Homofunctional condensations, 12
 - F. Insertions, ring expansions, and ring contractions, 13
 - G. Miscellaneous thermodynamically controlled processes, 14
 - H. Controlled breakdown of pre-existing structures, 14
 - J. Alteration of oxidation state of phosphorus or sulfur in existing rings, 14

References, 15

Chapter 2. Cyclic sulfur imides with two-coordinate sulfur, and their derivatives

- I. Introduction, scope, and history, 16
- II. Linear amides of divalent sulfur, 18
- III. Sulfur imides based on the S_8 ring, and their derivatives, 18
 - A. Introduction, 18
 - B. Monocyclic sulfur imides structurally related to cyclooctasulfur, 18
 - C. Sulfur nitrides with coupled eight-membered, rings, 29
 - D. The fused-ring sulfur nitride $S_{11}N_2$, 31
 - E. The search for other fused-ring sulfur nitrides, 33
 - F. Bis(heptasulfurimido) sulfoxide, S₁₅N₂O, 33
 - G. Polymeric sulfur nitride-imides: general, 34
 - H. The conformational stability of saturated S-N rings, 35

- IV. Sulfur imides based on rings other than eight-membered, 36
 - A. Introduction, 36
 - B. Derivatives of six-membered ring imides, 36
 - C. Derivatives of twelve-membered ring imides, 37
- V. Cyclic sulfur hydrazides, 37
 - A. Eight-membered rings, 37
 - B. Six-membered rings, 38

References, 38

Chapter 3. Imides and amides of sulfur(1v) as source materials for inorganic heterocycles

- I. Introduction, 41
- II. Structural relationships, 41
- III. Thionyl imide and its derivatives, 43
 - A. Thionyl imide, 43
 - B. Thionyl imide polymers and isomer, 44
 - C. Organic thionylimines, 46
 - D. Trimethylsilyl sulfinylamine, 46
 - E. Halogeno-thionylimines and bis(thionylimino)mercury, 47
 - F. Bis(thionylimino)sulfur, 48
 - G. Other thionyl imide substitution products with -NSO attached to sulfur, 48
 - H. The NSO⁻ ion, 49
- IV. Sulfur diimide and the sulfodiimides, 49
 - A. Sulfur diimide, 49
 - B. Organo-sulfodiimides, 49
 - C. Bis(trimethylsilyl) sulfur diimide and monosilylated analogs, 50
 - D. Bis(trimethylstannyl) sulfur diimide, 52
 - E. Bis(trifluoromethylsulfenyl) sulfur diimide, 52
 - F. Halogeno-sulfodiimides, 52
 - V. Amidosulfurous acid and its derivatives, 52
 - A. Introduction, 52
 - B. Amidosulfurous acid and the ammonia-sulfur dioxide reaction, 53
 - C. Imidodisulfurous acid and its salts, 54
 - D. Organic derivatives of amidosulfurous acid, 55
 - E. Amidosulfinyl halides, 55
- VI. Thionyl diamide and its derivatives, 56
 - A. Thionyl diamide, 56
 - B. Imidodisulfinamide, 56
 - C. Organic derivatives of thionyl diamide, 57
- VII. Alkyl and fluoroalkyl sulfimides as reagents for ring synthesis, 57
 - A. Introduction, 57
 - B. The sulfur imide $Me_2S = NSiMe_3$, 57
 - C. Bis(trifluoromethyl)sulfimide $(CF_3)_2S = NH$, 57
- VIII. Mixed P-S rings containing sulfur(Iv), 58
- References, 58

Chapter 4. Imides and amides of sulfur(v1) as source materials for inorganic heterocycles

I. Introduction and structural relationships. 60

- II. Sulfamide and its derivatives: monomeric sulfimide, 62
 - A. Introduction, 62
 - B. Sulfamide, 63
 - C. Metal derivatives of sulfamide, 64
 - D. N-Halogenosulfamides, 65
 - E. Organic derivatives of sulfamide and of monomeric sulfimide, 65
- III. Cyclic and linear polymers of sulfimide, 67
 - A. Introduction, 67
 - B. The preparation of cyclic and linear sulfimide polymers, 67
 - C. Properties and derivatives of the cyclic sulfimides, 70
 - D. Properties of the linear polymeric sulfimides, 71
 - E. Four-membered sulfimide rings, 74
- IV. Mixed six-membered rings containing the sulfimide group, 74
 - A. Introduction, 74
 - B. The compound $N_3S_3O_4H$, 74
 - C. Preparation and properties of N₃P₂SCl₄O₂Me isomers, 75
 - D. The cyclic anion $O_2S[NP(NH_2)_2]_2N^-$, 75
- V. Mixed four-membered rings containing the sulfimide group, 76
 - A. Introduction, 76
 - B. The one-ring compound (MeN)₂SO₂PF₃, 76
 - C. Spiro compounds, 76
- VI. Further imido derivatives of sulfur(vI), used or potentially usable in heterocyclic synthesis, 77
 - A. The S,S-dialkylsulfodiimides, 77
 - B. The mercurial $Hg[NS(O)F_2]_2$, 79
- References, 79

Chapter 5. Sulfanuric halides and related compounds

- I. Introduction: structural relationships, 81
- II. The sulfanuric halides, 83
 - A. Preparation of the sulfanuric chlorides, 83
 - B. Physical properties and structure of sulfanuric chlorides, 84
 - C. The cyclic trimeric sulfanuric fluorides, 85
 - D. The cyclic sulfanuric fluoride tetramer, 86
 - E. High polymeric sulfanuric fluorides, 86
 - F. Mixed sulfanuric chlorofluorides, 87
 - G. Reactions and derivatives of the sulfanuric halides, 87
 - H. The sulfanuric anion $(N_3S_3O_4F_2)^-$, 89
 - J. Isomerism of sulfanuric derivatives, 89
- III. Mixed sulfanuric rings wth other sulfur groups, 92.
 - A. Introduction, 92
 - B. The anion $N_3S_3O_3F_2^-$ and compounds $N_3S_3O_1XF_2$ (X = F, Cl), 92
 - C. Preparation and properties of [NS(O)Cl][NSCl]₂ and [NS(O)Cl]₂ [NSCl], 93
 - D. Preparation and properties of [NS(O)Cl][NSO₂][NS], 93
- IV. Sulfanuric rings containing a saturated segment, 94
- V. Mixed sulfanuric-phosphazene rings, 94
 - A. Introduction, 94
 - B. Preparation and properties of [NS(O)Cl][NPCl₂]₂ and [NS(O)Cl]₂-[NPCl₂], 94

- C. Preparation and properties of [NS(O)F]₂[NPCl₂], 95
- D. Reactions and derivatives of the mixed sulfanuric-phosphazene halides, 95

E. The eight-membered ring [NPCl₂]₃[NS(O)Cl], 96

References, 96

•

Chapter 6. Formally unsaturated sulfur nitrides and sulfur nitride ions

- I. Introduction and plan of treatment, 98
- II. Thiazyl polymers, $(SN)_n$, and thiazyl monomer, 99
 - A. Tetrasulfur tetranitride, 99
 - B. Disulfur dinitride, S_2N_2 , 111
 - C. Thiazyl polymer, $(SN)_x$, 112
 - D. Thiazyl monomer, SN, 114
- III. Other unsaturated sulfur-nitrogen ring molecules and ions, 114 A. Introduction, 114
 - B. Tetrasulfur dinitride, S₄N₂, 115
 - C. The thiotrithiazyl ion, $S_4N_3^+$, and its salts, 117
 - D. The cyclopentathiazenium cation, $S_5N_5^+$, and salts, 120
 - E. The $S_6 N_4^{2+}$ cation and salts, 121
 - F. The cations $S_3N_2^+$ and $S_4N_4^{2+}$, 122
 - G. The cation $S_3N_2^{2+}$, 123
 - H. The anion $S_3N_3^-$, 123
- IV. Sulfur-nitrogen cages based on tetrasulfur tetranitride, 123
 - A. Introduction, 123
 - B. The anion $S_4N_5^-$, 124
 - C. The cation $S_4N_5^+$, 124
 - D. The sulfur nitride S_5N_6 , 125
 - V. Unsaturated non-cyclic ions, 125
 - A. The thiazenium ion, SN⁺, 125
 - B. The perthionitrate anion, NS_4^- , 125
- References, 126

Chapter 7. Unsaturated cyclic sulfur nitride S-halides and their S-derivatives

- I. Introduction and history, 130
- II. Thiazyl halides (NSX)_n, (NS)_nX₂, and (NS)₃X, and their substitution products, 131
 - A. Thiazyl halides: general, 131
 - B. Cyclo-(NSF)₄ and cyclo-(NSCl)₄; cyclo-(NS)₄ F_2 and cyclo-(NS)₄Cl₂, 131
 - C. Cyclo-(NSF)₃ and cyclo-(NSCl)₃, 133
 - D. The compound $(NS)_3Br_2$, 136
 - E. The compounds $(NS)_3X$ (X = Cl, Br, I), 136
 - F. Monomeric thiazyl halides, 136
- G. Substitution products of the cyclic thiazyl halide oligomers, 137
- III. The sulfur nitride halides $S_3N_2X_2$, 139
 - A. Introduction and history, 139
 - B. Preparation and properties of [S₃N₃Cl]⁺Cl⁻, 139
 - C. Other compounds $S_3N_2X_2$ (X = halogen) of unknown structure, 140
- IV. Covalent compounds containing the five-membered S_3N_2 ring, 141
 - A. Introduction, 141
 - B. Preparation of S₃N₂ derivatives, 141

- C. Properties of S₃N₂ derivatives, 142
- D. Structures of S_3N_2 derivatives, 143
- V. Sulfur-nitrogen halides of unknown structure, 143
- References, 143

Chapter 8. Unsaturated cyclic sulfur nitride S-oxides and S-oxide ions I. Introduction and history, 145

- II. Compounds with eight-membered S-N rings, 145
 - A. $S_4N_4O_4$, 146
 - B. $S_4N_4O_2$, 146
- III. Compounds with six-membered S-N rings, 148
 - A. The ion $S_3N_3O_4$, 148
 - **B.** The compound $S_3N_3O_2Cl$, 148
- IV. Compounds with five-membered S-N rings: the oxide S_3N_2O , 148
- V. A sulfur nitride oxide ion based on the S_4N_4 cage: $S_4N_5O^-$, 150
- VI. Sulfur nitride oxides of unknown structure, 150
- References, 150

Chapter 9. Bonding and electron-counting in S-N heterocycles

- I. Introduction, 152
- II. S-N bond parameters in general, 153
 - A. Length-force constant correlation, 153
 - B. Length-order correlation, 153
 - C. Energy-order correlation, 154
- III. Bond angles and lengths in formally saturated S-N rings, 156
 - A. Configurations at nitrogen, 156
 - B. Configurations at sulfur, 157
- IV. Bond lengths and angles in formally unsaturated S-N rings, 157 A. Configurations at nitrogen, 157
 - **B.** Configurations at sulfur, 159
- V. Synoptic treatments of bonding in unsaturated S-N heterocycles, 159
 - A. Introduction, 159
 - B. Aromaticity in near-planar rings, 159
 - C. The cage or cluster viewpoint, 161
 - D. Transannular bonding in general, 164
 - E. Conclusion, 164
- References, 165

١

Chapter 10. Phosphorus-sulfur rings and cages

- I. Introduction and history, 166
- II. Small-molecule phosphorus sulfides and derivatives, 167
 - A. Preparation, characterization, and structure, 167
 - B. Reactions, 172
 - C. Uses of the phosphorus sulfides, 175
 - D. The oxosulfide $P_4S_6O_4$, 175
 - E. Cage and ring compounds from halogenation of phosphorus sulfides, 176
- III. Organo-substituted P-S rings, 178
 - A. Six-membered P₃S₃ rings, 178
 - B. Five-membered P₃S₂ rings, 178

- C. Five-membered P₄S rings, 179
- D. Four-membered P₂S₂ rings, 180
- IV. Phosphorus sulfide high polymers, 181

References, 182

Chapter 11. Saturated phosphorus-nitrogen heterocycles: the cyclo- and closophosphazanes

- I. Introduction, 184
 - A. Scope, status, and treatment, 184
 - B. Conditions for stability of dimeric cyclophosphazanes, 186
- II. Saturated phosphorus(III)-nitrogen heterocycles, 137
 - A. Introduction, 187
 - B. Reactions of phosphorus trihalides with amines and ammonia, 188
 - C. Cyclodiphosph(III)azanes: preparation, structure, and properties, 189
 - D. Cyclotri- and cyclotetra-phosph(III)azanes, 192
 - E. Cage phosph(III)azanes: preparation structure and properties, 192
 - F. Heterocyclic hydrazido derivatives of phosphorus(III), 195
 - G. Phosph(III)azane polymers, 196
- III. Saturated phosphorus(v)-nitrogen heterocycles, 197
 - A. Introduction, 197
 - B. Reactions of phosphorus(v) halides with amines and ammonia, 197
 - C. Cyclodiphosph(v)azanes: preparation, structure, and properties, 199
 - D. Cyclophosph(v)azanes: trimers and higher oligomers, 205
 - E. Spirophosph(v)azanes, 207
 - F. Cage phosph(v)azanes, 208
 - G. Heterocyclic hydrazido derivatives of phosphorus(v), 209
 - H. Homologues of the cyclodiphosph(v)a.canes with sulfonyl groups as ring components, 210

IV. The cage phosphazane-phosphazene anion $P_{12}N_{14}S_{12}^{6-}$, 210 References, 211

Chapter 12. The phosphazenes

- I. General introduction, 214
- II. Literature, 215
- III. History, 216
- IV. General properties of the cyclic phosphazenes, 217
- V. Primary preparations of the cyclic phosphazenes, 217
 - A. Introduction, 217
 - B. Syntheses from ammonium halides and phosphorus(v) compounds, 218
 - C. Synthesis from aminochlorophosphoranes, 221
 - D. Oxidative phosphazene syntheses from phosphorus(III) halides, 221
 - E. Other primary phosphazene syntheses, 221
- VI. Phosphazene polymers other than simple rings, 221
 - A. Phosphazene high polymers, 221
 - B. Linear phosphazene oligomers, 223
 - C. Fused-ring, spiro, and coupled-ring phosphazene compounds, 224
- VII. Reactions and derivatives of the cyclic phosphazenes, 226
 - A. Isomerism among substitution products of the cyclophosphazenes, 226
 - B. Complexes with Lewis bases, 227

- C. Nucleophilic substitution reactions of the phosphazenes: introduction, 228
- D. Halogen and pseudohalogen exchange, 228
- E. Nucleophilic substitution by -OH, -OR, -SR, 229
- F. Nucleophilic substitution by amino groups, 231
- G. Nucleophilic substitution by carbanions, 232
- H. Addition of phosphazenes to Lewis acids, including the proton, 234
- J. Catalytic arylation of phosphazenes, 237
- K. Reduction of phosphazenes, 237
- VIII. Molecular structure and its rationalization, 237
- IX. Electronic structure and the question of aromaticity, 242
- References, 246

Chapter 13. Polymeric phosphorus nitrides and related compounds

- I. Introduction, 250
- II. History, 251
- III. The phosphorus nitrides and phospham, 251
 - A. The gas-phase molecule PN, 251
 - B. Amorphous phosphorus nitrides, including "phosphorus mononitride", (PN)_x, 252
 - C. Triphosphorus pentanitride, 253
 - D. Phosphams, $(PN_2H)_x$, 254
- IV. Polymeric phosphorus oxonitride and thionitride, 255
 - A. Phosphorus oxonitride, $(OPN)_x$, 255
 - B. Phosphorus thionitride, $(SPN)_x$, 256
- V. Desirable lines of work in this area, 256

References, 257

Appendix, 259 Index, 260