ELEMENTS OF THE NATURE AND PROPERTIES OF SOILS

THIRD EDITION

Nyle C. Brady Cornell University, Emeritus

Ray R. Weil
University of Maryland at College Park

Martin-Luther Inversitat Zweigorgunder der ULB Geowießenschaften Verseichidorff-Platz 3-4 06120 Halle (Saale)

Pearson Education International

Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

contents

Preface iii
 About the Authors v

The Soils Around Us 1

Soils as Media for Plant Growth 2

Soil as Regulator of Water Supplies 6

Soil as Recycler of Raw Materials 7

Soil as Modifier of the Atmosphere 7

Soil as Habitat for Soil Organisms 7

Soil as Engineering Medium 8

Pedosphere as Environmental Interface 9

Soil as a Natural Body 9

The Soil Profile and Its Layers (Horizons) 11

Soil: The Interface of Air, Minerals, Water, and Life 15

Mineral (Inorganic) Constituents of Soils 15

Soil Organic Matter 16

Soil Water: A Dynamic Solution 19

Soil Air: A Changing Mixture of Gases 19

Interaction of Four Components to Supply Plant

Nutrients 21

Nutrient Uptake by Plant Roots 22

Soil Quality, Degradation, and Resilience 23

Conclusion 25

Study Questions 26

References 26

Formation of Soils from Parent Materials 27

Weathering of Rocks and Minerals 28

Factors Influencing Soil Formation 32

Parent Materials 33

Climate 43

Biota: Living Organisms—Including Humans 44

Topography 47

Time 49

Four Basic Processes of Soil Formation 51

The Soil Profile 52

Conclusion 56

Study Questions 57

References 57

Soil Classification 58

Concept of Individual Soils 59

Comprehensive Classification System: Soil Taxonomy 60

Categories and Nomenclature of Soil Taxonomy 64

Soil Orders 65

Entisols (Recent: Little if Any Profile

Development) 69

Inceptisols (Few Diagnostic Features: Inception of

B Horizon) 70

Andisols (Volcanic Ash Soils) 70

Gelisols (Permafrost and Frost Churning) 72

Histosols (Organic Soils Without Permafrost) 73

Aridisols (Dry Soils) 74

Vertisols (Dark, Swelling, and Cracking Clays) 76

Mollisols (Dark, Soft Soils of Grasslands) 78

Alfisols (Argillic or Natric Horizon, Moderately Leached) 78

Ultisols (Argillic Horizon, Highly Leached) 80

Spodosols (Acid, Sandy, Forest Soils, Highly Leached) 81

Oxisols (Oxic Horizon, Highly Weathered) 82

Lower-Level Categories in Soil Taxonomy 83

Techniques for Mapping Soils 877

Soils Surveys 90

Conclusion 92

Study Questions 94

References 94 .

Soil Architecture and Physical Properties 96

Soil Color 97

Soil Texture (Size Distribution of Soil Particles) 97

Soil Textural Classes 100

Structure of Mineral Soils 104

Formation and Stabilization of Soil Aggregates 105

Tillage and Structural Management of Soils 110

Soil Density and Compaction 114

Pore Space of Mineral Soils 121

Soil Properties Relevant to Engineering Uses 123

Conclusion 129

Study Questions 130

References 130

Soil Water: Characteristics and Behavior 132

and benavior 102

Structure and Related Properties of Water 133

Capillary Fundamentals and Soil Water 135

Soil Water Energy Concepts 137

Soil Water Content and Soil Water Potential 140

The Flow of Liquid Water in Soil 144

Infiltration and Percolation 150

Water Vapor Movement in Soils 154

Qualitative Description of Soil Wetness 154

Factors Affecting the Amount of Plant-Available Soil Water 157

Conclusion 162

Study Questions 163

References 164

Soil and the Hydrologic Cycle 165

The Global Hydrologic Cycle 166

Fate of Precipitation and Irrigation Water 168

The Soil-Plant-Atmosphere Continuum 172

Control of Vapor Losses 176

Liquid Losses of Water from the Soil 180

Percolation and Groundwaters 182

Enhancing Soil Drainage 185

Septic Tank Drain Fields 189

Irrigation Principles and Practices 193

Conclusion 198

Study Questions 199

References 199

Soil Aeration and Temperature 201

4. 公债等

Soil Aeration—The Process 202

Means of Characterizing Soil Aeration 204

Oxidation Reduction (Redox) Potential 205

Factors Affecting Soil Aeration and E_h 207

Ecological Effects of Soil Aeration 208

Aeration in Relation to Soil and Plant Management 211

Wetlands and Their Poorly Aerated Soils 213

Processes Affected by Soil Temperature 218

Absorption and Loss of Solar Energy 224

Thermal Properties of Soils 226

Soil Temperature Control 229

Conclusion 232

Study Questions 233

References 233

The Colloidal Fraction: Seat of Soil Chemical and Physical Activity 235

General Properties and Types of Soil Colloids 236

Fundamentals of Layer Silicate Clay Structure 240

Mineralogical Organization of Silicate Clays 242

Characteristics of Nonsilicate Colloids 245

Genesis and Geographic Distribution of Soil Colloids 247

Sources of Charges on Soil Colloids 248

Adsorption of Cations and Anions 250

Cation Exchange Reactions 252 Cation Exchange Capacity 254

Exchangeable Cations in Field Soils 256

Anion Exchange 259

Sorption of Organic Compounds 261

Binding of Biomolecules to Clay and Humus 262

Physical Implications of Swelling-Type Clays 263

Conclusion 266 Study Questions 267 References 268

Soil Acidity, Alkalinity, Aridity, and Salinity 269

Processes That Cause Soil Acidity and Alkalinity 270

Role of Aluminum in Soil Acidity 275

Pools of Soil Acidity 276

Buffering of pH in Soils 279

Soil pH in the Field 282

Human-Influenced Soil Acidification 283

Biological Effects of Soil pH 287

Raising Soil pH by Liming 291

Alternative Ways to Ameliorate the III Effects of Soil Acidity 296

Lowering Soil pH 297

Characteristics and Problems of Dry-Region Soils 298

Development of Salt-Affected Soils 301

Measuring Salinity and Sodicity 303

Classes of Salt-Affected Soils 306

Physical Degradation of Soil by Sodic Chemical Conditions 308

Growth of Plants on Salt-Affected Soils 309

Water-Quality Considerations for Irrigation 312

Reclamation of Saline Soils 314

Reclamation of Saline-Sodic and Sodic Soils 316

Conclusion 318

Study Questions 319

References 320

Organisms and Ecology of the Soil 322

The Diversity of Organisms in the Soil 323

Organisms in Action 325

Organism Abundance, Biomass, and Metabolic **Activity 329** 4 公林等

Earthworms 330

Ants and Termites 334

Soil Microanimals 335

Plants—Especially Roots 338

Soil Fungi 340

Soil Prokaryotes: Bacteria and Archaea 345

Conditions Affecting the Growth of Soil Microorganisms 349

Beneficial Effects of Soil Organisms on Plant Communities 350

Soil Organisms and Damage to Higher Plants 351

Ecological Relationships among Soil Organisms 355

Conclusion 358

Study Questions 358

References 359

Soil Organic Matter 361

The Global Carbon Cycle 362

The Process of Decomposition in Soils 365

Factors Controlling Rates of Decomposition and Mineralization 368

Genesis and Nature of Soil Organic Matter and Humus 372

Influences of Organic Matter on Plant Growth and Soils 374

Amounts and Quality of Soil Organic Matter 378

Carbon Balance in the Soil-Plant-Atmosphere System 380

Factors and Practices Influencing Soil Organic Levels 383

The Greenhouse Effect: Soils and Climate Change 387

Composts and Composting 391

Conclusion 393 Study Questions 394 References 395

12

Nutrient Cycles and Soil Fertility 396

Nitrogen in the Soil System 397

Sulfur and the Soil System 412

Phosphorus and Soil Fertility 420

Potassium in Soils and Plants 433

Calcium as Essential Nutrient 439

Magnesium as a Plant Nutrient 441

Micronutrients in the Soil-Plant System 442

Factors Influencing the Availability of Micronutrient Cations 447

Factors Influencing the Availability of the Micronutrient Anions 450

Conclusion 451 Study Questions 452 References 453

13

Practical Nutrient Management 455

Goals of Nutrient Management 456

Environmental Quality 457

Recycling Nutrients Through Animal Manures 466 Industrial and Municipal By-Products 470

Practical Utilization of Organic Nutrient Sources 473

Inorganic Commercial Fertilizers 476

Fertilizer Application Methods 481

Timing of Fertilizer Application 483

Diagnostic Tools and Methods 484

Soil Analysis 488

Site-Index Approach to Phosphorus Management 492

Conclusion 495

Study Questions 496

References 496

14

Soil Erosion and Its Control 499

Significance of Soil Erosion and Land Degradation 500 On-Site and Off-Site Effects of Accelerated Soil Erosion 502

Mechanics of Water Erosion 504

Models to Predict the Extent of Water-Induced Erosion 507

Factors Affecting Interrill and Rill Erosion 508

Conservation Tillage 513

Vegetative Barriers 516

Control of Gully Erosion and Mass Wasting 517

Control of Accelerated Erosion on Range- and Forestland 519

Erosion and Sediment Control on Construction
Sites 521

Wind Erosion: Importance and Factors Affecting It 524

Predicting and Controlling Wind Erosion 527

Progress in Soil Conversation 528

Conclusion 531

Study Questions 532

References 533

015

Soils and Chemical Pollution 535

Toxic Organic Chemicals 536

Kinds of Organic Contaminants 538

Behavior of Organic Chemicals in Soil 540

Remediation of Soils Contaminated with Organic Chemicals 545

Contamination with Toxic Inorganic Substances 551

Reactions of Inorganic Contaminants in Soils 553

Prevention and Elimination of Inorganic Chemical Contamination 557

Landfills 558

Radon Gas from Soils 561

Conclusion 563

Study Questions 564

References 564

Appendix A World Reference Bäse, Canadian, and Australian Soil Classification Systems 566

Appendix B SI Units, Conversion Factors, Periodic Table of the Elements, and Plant Names 571

Glossary of Soil Science Terms 577

Index 596