Contents

Preface...v
Contributors..ix

1 3D Cell Culture: A Review of Current Approaches and Techniques 1
 John W. Haycock

2 Scaffolds for Tissue Engineering and 3D Cell Culture..............................17
 Eleonora Carletti, Antonella Motta, and Claudio Migliarese

3 Tracking Nanoparticles in Three-Dimensional Tissue-Engineered
 Models Using Confocal Laser Scanning Microscopy.................................41
 Vanessa Hearnden, Sheila MacNeil, and Giuseppe Battaglia

4 Using Immuno-Scanning Electron Microscopy for the Observation
 of Focal Adhesion-substratum interactions at the Nano- and Microscale
 in S-Phase Cells ..53
 Manus J.P. Biggs, R. Geoff Richards, and Matthew J. Dalby

5 3D Sample Preparation for Orthopaedic Tissue Engineering Bioreactors 61
 Sarah H. Cartmell, Sarah Rathbone, Gemma Jones, and L. Araida Hidalgo-Bastida

6 Quantification of mRNA Using Real-Time PCR and Western
 Blot Analysis of MAPK Events in Chondrocyte/Agarose Constructs 77
 David A. Lee, June Brand, Donald Salter, Oto-Ola Akanji, and Tina T. Chowdhury

7 Genetic Modification of Chondrocytes Using Viral Vectors99
 Teresa Coughlan, Aileen Crawford, Paul Hatton, and Michael Barker

8 Stem Cell and Neuron Co-cultures for the Study of Nerve Regeneration115
 Paul J. Kingham, Cristina Mantovani, and Giorgio Terenghi

9 Production of Tissue-Engineered Skin and Oral Mucosa for Clinical
 and Experimental Use ..129
 Sheila MacNeil, Joanna Shepherd, and Louise Smith

10 Three-Dimensional Alignment of Schwann Cells Using Hydrolysable
 Microfiber Scaffolds: Strategies for Peripheral Nerve Repair155
 Celia Murray-Dunning, Sally L. McArthur, Tao Sun, Rob McKean,
 Anthony J. Ryan, and John W. Haycock

11 Encapsulation of Human Articular Chondrocytes into 3D Hydrogel:
 Phenotype and Genotype Characterization ...167
 Rui C. Pereira, Chiara Gentili, Ranieri Cancedda, Helena S. Azevedo, and Rui L. Reis

12 Micro-structured Materials and Mechanical Cues in 3D Collagen Gels183
 James B. Phillips and Robert Brown
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Organotypic and 3D Reconstructed Cultures of the Human Bladder and Urinary Tract</td>
<td>Claire L. Varley and Jennifer Southgate</td>
<td>197</td>
</tr>
<tr>
<td>14</td>
<td>Ex Vivo Organ Culture of Human Hair Follicles: A Model Epithelial–Neuroectodermal–Mesenchymal Interaction System</td>
<td>Desmond J. Tobin</td>
<td>213</td>
</tr>
<tr>
<td>15</td>
<td>Human Endothelial and Osteoblast Co-cultures on 3D Biomaterials</td>
<td>Ronald E. Unger, Sven Halstenberg, Anne Sartoris, and C. James Kirkpatrick</td>
<td>229</td>
</tr>
<tr>
<td>16</td>
<td>Assessment of Nanomaterials Cytotoxicity and Internalization</td>
<td>Noha M. Zaki and Nicola Tirelli</td>
<td>243</td>
</tr>
<tr>
<td>17</td>
<td>Practical Aspects of OCT Imaging in Tissue Engineering</td>
<td>Stephen J. Matcher</td>
<td>261</td>
</tr>
<tr>
<td>18</td>
<td>Osteogenic Differentiation of Embryonic Stem Cells in 2D and 3D Culture</td>
<td>Lee Buttery, Robert Bielby, Daniel Howard, and Kevin Shakesheff</td>
<td>281</td>
</tr>
<tr>
<td>19</td>
<td>3D Structuring of Biocompatible and Biodegradable Polymers Via Stereolithography</td>
<td>Andrew A. Gill and Frederik Claeyssens</td>
<td>309</td>
</tr>
<tr>
<td>20</td>
<td>Alvetex®: Polystyrene Scaffold Technology for Routine Three Dimensional Cell Culture</td>
<td>Eleanor Knight, Bridgid Murray, Ross Carnachan, and Stefan Przyborski</td>
<td>323</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td></td>
<td>341</td>
</tr>
</tbody>
</table>