Microbial Diversity and Genetics of Biodegradation

Edited by Koki Horikoshi, Masao Fukuda and Toshiaki Kudo

JAPAN SCIENTIFIC SOCIETIES PRESS Tokyo

KARGER

Basel·Freiburg·Paris·London·New York·New Delhi· Bangkok·Singapore·Tokyo·Sydney

Contents

Preface	V
SECTION I OVERVIEW	
1. Basic Knowledge and Perspectives on Microbial Diversity and Genetics of Biodegradation of Aromatic Compounds Masao Fukuda and Toshiaki Kudo	i
Masao Fakada and Fosmaki Rado	٠
Introduction	1
The Biochemistry of Xenobiotic Biodegradation	4
Microbial Ecology and Community Structure	5
Evolutionary Mechanisms and Pathway Diversity	6
SECTION II THE BIOCHEMISTRY OF XENOBIOTIC BIODEGRADATION	
1. Hybrid Enzymes between Biphenyl/Polychlorinated Biphenyl (PCB) and Benzene/Toluene Degradative Pathway Dioxygenases	
Masao Fukuda, et al	11
Introduction	11
	13
The state of the s	14
•	17
The Functional Implication of the Residue 280 for Substrate	. ,
	18
	19
	19
	19

2. Multiple Metabolic Pathways Involved in Polychlorinated Biphenyl (PCB) Degradation in Rhodococcus sp. Strain RHA1 James E. Hauschild, et al	21
Introduction	21 22 23
in RHA1	27 31 32
3. Biochemistry of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Degradation: Evolutionary Implications	
Robert P. Hausinger, et al	35
Introduction. The 2,4-D Degradation Pathway in R. eutropha JMP134 (pJP4). Variations on a Theme: Similar Pathway in Other Microbes Evidence for Mechanistically Distinct Enzymes in a pJP4-like Pathway and for Alternative Pathways. Evolutionary Origins of the pJP4 2,4-D Metabolic Pathway	35 36 41 43 46
Summary	48
4. Regulation of 2,4-Dichlorophenoxyacetic Acid Degradative Operons	
Alice D. Wright and Larry Snyder	53
Introduction	53 54
Regulation of Bacterial Operons	56
Regulation of 2,4-D Degradative Operons in Strain JMP134	56
Analysis of the <i>tfdR</i> DNA Sequence	58
RSAC	58 59
Summary	60
	~

SECTION III MICROBIAL ECOLOGY AND COMMUNITY STRUCTURE

	What is the Global Pattern of Chloroaromatic Degarading Microbial Populations?
	ames M. Tiedje, et al
I	ntroduction
S	Study Sites
(Geographic Patterns of Chloroaromatic Degraders
(Geographic Patterns of tfdA Families
V	What Are the 2,4-D Degraders in Pristine Soil?
F	References
S	Genome Confomation and Genetic Diversity: A Closer Look at Several Species of <i>Rhodococcus</i> Isolated from Contaminated Soils
ľ	Nancy L. Tonso
I	ntroduction
E	Background
7	Types of Genomes Harboring PCB Degradative Genes
(Genome Conformation of Several Rhodococcus Isolated from
	Contaminated Soils in Japan
S	Summary
F	References
2	Experimental Studies on the Evolution of Bacteria That Degrade
ŀ	Richard E. Lenski, et al
	General Introduction
	Effects of Habitat Structure
E	Effects of Substrate Concentration
S	Summary
	References

4.	Effects of Toxic Metabolites on Dynamics and Fitness in Laboratory Populations	
	Michael Travisano	97
	Introduction	
	Life History(A Model)	. 98
	Population Dynamics	99
	Fitness	
	Summary	
	References	. 112
5.	Isolation and Characterization of Pentachloronitrobenzene (PCNB) Degrading Bacterium, Pseudomonas aeruginosa Strain I-41 Katsunori Tamura, et al	. 113
	Introduction	. 113
	Distribution of PCNB Degrading Bacteria	
	Main Pathway for Microbial Degradation of PCNB in Soil	
	Characterization of PCNB Degrading Bacterium I-41	
	Influence of PCNB on Soil Microorganisms	
	Summary	
	References	
6.	Degradation of Aromatics and Haloaromatics by Halophilic Bacteria Patrick Oriel, et al	. 123
	Introduction	. 123
	Isolation of Halophiles from Michigan Petroleum Brine	
	Isolation of 2,4-D-Degrading Haloalkaliphiles from Alkali Lake	,
	Oregon	
	Conclusions	
	References	. 129

SECTION IV	EVOLUTIONARY	MECHANISMS	AND	PATHWAY
	DIVERSITY			

Introduction	ng
Rhodococcus sp	
Different meta Pathways	
Summary	
References	•
. The Evolution of <i>meta-</i> Cleavage Pathway for Degaradation o	f
Polychlorinated Biphenyl (PCB)/Biphenyl in Gram-negative Bacteria	
Michihisa Maeda, et al	•
Introduction	
PCB Degradation Pathway	
Enrichment Screening for PCB/Biphenyl-Degrading Bacteria .	
Characterization of Alkali-Tolerant Bacteria	
Characterization of Solvent-Tolerant PCB/Biphenyl-Degrading	
Bacteria	•
Comparison of Solvent-Tolerance among Biphenyl/PCB or	
Toluene-Degrading Bacteria	
Analysis of PCB Degradation Profiles	
Evolution of bph/tod Pathway	
Summary	
References	
References	

General Introduction	. 169
Structure of the meta-Cleavage Pathway	
Summary	
References	
4. Structure and Function of Biphenyl/Polychlorinated Biphenyl	
(PCB) Degradation Genes in a Gram-positive Bacterium	
Rhodococcus sp. RHA1	
Eiji Masai, et al	. 185
Introduction	. 183
Cloning of Biphenyl Dioxygenase (bphA), Dihydrodiol Dehydro)-
genase (bphB), and meta-Cleavage Enzyme (bphC) Genes in	
Rhodococcus sp. RHA1	
Expression of bphACB Genes in Escherichia coli	
Expression of bphACB Genes in Rhodococcus Host	
Disruption of the bphA1 Gene	
Cloning of the meta-Cleavage Pathway Genes	
Discussion	
Summary	
References	. 194
5. Genetic Diversity of 2,4-Dichlorophenoxyacetic Acid (2,4-D)	
Catabolic Genes	
Cindy H. Nakatsu, et al	. 19
Introduction	. 19
Genetics of 2,4-D Degradation by Alcalienes eutrophus JMP134	
Other 2,4-D Degrading Bacterial Isolates	
Location of 2,4-D Genes	
Diversity in Nucleatide Courses	. 20
Diversity in Nucleotide Sequence	. 20
Diversity in Gene Order	
Summary	
References	. 20
Index	. 20