

## 2002 15<sup>th</sup> Optical Fiber Sensors Conference **Technical Digest**



6-10 May 2002 Hilton Portland Portland, OR, USA

**UB/TIB Hannover** 

## **TABLE OF CONTENTS**

## Monday, 6 May 2002

| MA               | 25th Anniversary of the Fiber Optic Gyro                                                                                           |     |
|------------------|------------------------------------------------------------------------------------------------------------------------------------|-----|
| MA1              | From R&D Brassboards to Navigation Grade FOG-based INS: the Experience of Photonetics/Ixsea                                        | 1   |
| MA2              | Fiber Optic Gyro Technology Trends - Honeywell Perspective                                                                         |     |
| MA3              | Fiber Optic Gyro Based Inertial Navigation Systems at Northrop Grumman                                                             |     |
| MA4              | Recent Progress of Fiber Optic Gyroscopes and Applications at JAE                                                                  |     |
| MA5              | Application of Fiber Gyros at MPC - Inertial Navigation and Guidance System for M-V Rocket                                         |     |
| MA6              | Development and Commercialization of Open Loop Fiber Gyros at KVH Industries (formerly at Andrew)                                  |     |
| мв               | Commercialization of Fiber Optic Sensors                                                                                           |     |
| MB1              | How to Start a Small High Tech Business in Troutdale, Oregon?                                                                      |     |
| MB2              | SMARTEC: Bringing Fiber Optic Sensors into Concrete Applications                                                                   |     |
| MB3              | Commercialization of Fiber-Optic Current and Voltage Sensors at Next Phase                                                         |     |
| MB4              | Optical Fiber Sensor Applications at Hitachi Cable                                                                                 | 35  |
| MB5              | The Present and Future of Fiber Optic Sensors in the Oilfield Service Industry: Where is there a role?                             | 39  |
| MB6              | Changing Paradigms in Oil and Gas Reservoir Monitoring - The Introduction and Commercialization of In-Well Optical Sensing Systems |     |
| Tuesd            | ay, 7 May 2002                                                                                                                     |     |
| TuA              | Fiber Grating Sensors & Applications I                                                                                             |     |
| TuA1             | Optical Fiber Grating Sensor Networks and their Application in Electric Power Facilities, Aerospace and Geotechnical Engineering   | 49  |
| TuA2             | Test of a Fibre Bragg Grating Sensor Network for Commercial Aircraft Structures                                                    |     |
| TuA3             | In-Situ Evaluation of Composite Structural Performance in Presence of High                                                         |     |
| Tuno             | Stress/Strain Gradients using Multi-Axis Fiber Grating Strain Sensors                                                              | 59  |
| TuA4             | Fibre Bragg Grating Temperature Sensors for Harsh Nuclear Environments                                                             |     |
| TuA5             | Structural Damage Assessment via Modal Property Identification using Macro-                                                        |     |
| TD               | Strain Measurements with Fiber Bragg Gratings as an Alternative to Accelerometers                                                  | 67  |
| TuB <sub>1</sub> | Fiber Grating Sensors & Applications II                                                                                            | 71  |
| TuB1             | Prospects of Polymer Optical Fibres and Gratings in Sensing                                                                        |     |
| TuB2             | Departure from Linearity of Fibre Bragg Grating Temperature Coefficients                                                           | 75  |
| TuB3             | Simultaneous Measurement of Strain, Temperature and Curvature using a Sampled Fibre Bragg Grating                                  | 79  |
| TuB4             | Fiber Grating Type Dependence of Temperature and Strain Coefficients and                                                           |     |
| T. De            | Application to Simultaneous Temperature and Strain Measurement                                                                     |     |
| TuB5             | Strain Response of Fibre Bragg Grating Sensors at Cryogenic Temperatures                                                           | 87  |
| TuC              | Fiber Grating Sensors & Applications III                                                                                           | 04  |
| TuC1             | FBG-based Smart Composite Bogies for Railway Applications                                                                          |     |
| TuC2             | Triaxial Bragg Grating Accelerometer                                                                                               | 95  |
| TuC3             | Fibre Bragg Grating Location by a Side Scatter Technique based on Cladding Mode Coupling                                           | 99  |
| TuC4             | Bragg-Grating Interrogation Scheme using Spectral Filtering and Amplitude-<br>to-Phase Optical Conversion                          | 103 |
| TuC5             | Temperature and Strain Measurement using a Combined Fiber Bragg Grating and                                                        |     |
| T.,CC            | Fluorescence Intensity Ratio Technique in Er <sup>3+</sup> -doped Fiber.                                                           | 107 |
| TuC6             | High Strain and High Strain Gradients Measured with Fiber Bragg Gratings in Structural Engineering Applications                    | 111 |

| <b>TuD</b><br>TuD1 | Chemical & Biological Sensors I From Molecular Engineering of Luminescent Indicators to Environmental Analytical                     |     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|
|                    | Chemistry in the Field with Fiber-Optic (Bio)sensors                                                                                 |     |
| TuD2               | Optical Fiber Long Period Gratings with Thin Film Overlays                                                                           |     |
| TuD3               | A High Sensitivity Long Period Grating Mach-Zehnder Refractometer                                                                    | 123 |
| TuP                | Poster Session I - Fiber Grating Sensors & Applications                                                                              |     |
| TuP1               | A Long Period Grating Liquid Level Sensor                                                                                            | 127 |
| TuP2               | The Resonance Wavelength-Tuning Characteristic of the Arc-Induced LPFGs by Diameter Modulation                                       | 131 |
| TuP3               | Mechanically Induced Long Period Fiber Grating and Its Application for Distributed Sensing                                           | 135 |
| TuP4               | Enhanced Sensitivity Fibre Optic Long Period Grating Temperature Sensor                                                              | 139 |
| TuP5               | Measurement of Bending Curvature using Bandpass Filters based on Phase-Shifted                                                       |     |
|                    | Long-Period Fiber Gratings                                                                                                           | 143 |
| TuP6               | A Novel Fiber-Optic Torsion Sensor based on a CO <sub>2</sub> -Laser-Induced Long-<br>Period Fiber Grating                           | 147 |
| TuP7               | Time and Wavelength Multiplexing of Fiber Bragg Grating Sensors using a  Commercial OTDR                                             | 151 |
| TuP8               | Enhancement of Wavelength Detection Accuracy in Fiber Bragg Grating                                                                  |     |
|                    | Sensors by using a Spectrum Correlation Technique                                                                                    | 155 |
| TuP9               | Experimental Characterization of Tilted Fibre Bragg Gratings                                                                         |     |
| TuP10              | Use of ESPI for Absolute High Resolution Calibration of FBG Sensors                                                                  | 163 |
| TuP11              | A Birefringence Compensation Method for Mechanically Induced Long-Period Fiber Gratings in Optical Communication and Sensing Systems | 167 |
| TuP12              | Direct Measurement of Strain-Optic Effect in Fiber Bragg Gratings                                                                    |     |
| TuP13              | Measurements of Wavelength-Dependent Photosensitivity by using Long- Period Fiber Gratings                                           |     |
| TuP14              | A Polarisation Maintaining Fibre Bragg Grating Interrogation System for Multi- Axis Strain Sensing                                   |     |
| TuP15              | Improving Measurement Accuracy of Fiber Bragg Grating Sensor using Digital  Matched Filter                                           |     |
| TuP16              | Temperature and Source Fluctuation Insensitive Demodulation Technique for                                                            |     |
| 101 10             | Bragg Grating Sensors                                                                                                                | 187 |
| TuP17              | Multiplexed Twin Bragg Grating Interferometric Sensor                                                                                | 191 |
| TuP18              | High Temperature, Stable Fiber Bragg Gratings                                                                                        |     |
| TuP19              | Transverse Load, Static Strain, Temperature and Vibration Measurement using a Cascaded FBG/EFPI/LPFG Sensor System                   | 199 |
| TuP20              | Simultaneous Measurement of Strain and Temperature using a Fiber Bragg Grating and a Thermochromic Material                          |     |
| TuP21              | Temperature-Strain Discrimination using a Wavelength-Division-Multiplexed                                                            |     |
|                    | Chirped in-Fibre-Brag-Grating/Extrinsic Fabry-Perot Sensor System                                                                    | 207 |
| TuP22              | Application of FBG Sensors to Strain and Temperature Monitoring of Full Scale  Prestressed Concrete Bridges                          | 211 |
| TuP23              | High-Speed Structural Monitoring using a Fiber Bragg Grating Sensor System                                                           | 215 |
| TuP24              | Experimental Feasibility Demonstration of Steel Structures Monitoring using Fiber Bragg Grating Technology                           | 219 |
| TuP25              | Temperature Stabilization of Fiber Bragg Grating Vibration Sensor                                                                    |     |
| TuP26              | Chirped Fiber Optic Bragg Grating Interrogator for a Bragg Grating Strain Sensor                                                     |     |
| TuP27              | Induction of Sinusoidal Chirp in Fiber Bragg Grating and Application to Optical Fiber Sensing with Intensity Measurements            |     |
| TuP28              | Chirped Fiber Optic Bragg Grating Esophageal Pressure Sensor                                                                         |     |
| TuP29              | A Microphone Array using Fiber Bragg Gratings                                                                                        |     |
| TuP30              | Multiplexing of Self-Referenced Fibre Optic Intensity Sensors using Fibre                                                            |     |
|                    | Bragg Gratings and Wavelength Division Couplers                                                                                      | 243 |

## Wednesday, 8 May 2002

| WA         | Chemical & Biological Sensors II                                                                                                              |     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| WA1        | RAPTOR: A Fluoroimmunoassay-Based Fiber Optic Sensor For Detection of Food Pathogens                                                          | 249 |
| WA2        | Two-Wavelength Nephelometry for the Recognition of Particulates using Optical Fibers                                                          |     |
| WA3        | A Mode-Locked Fibre Laser System for Multi-Point Intra-Cavity Gas Spectroscopy                                                                |     |
| WA4        | Large Scale Multiplexing a Point Sensor for Methane Gas Detection                                                                             |     |
| WA5        | ZrO <sub>2</sub> Thin Films Deposited by the Electrostatic Self-Assembly Method on Optical Fibers for Ammonia Detection                       | 265 |
| WA6        | Engineering a Portable Quasi-Distributed Fibre-Bragg-Grating Temperature Sensing System for Clinical Hyperthermia                             |     |
| WA7        | Optical Fiber Sensors for Breathing Diagnostics                                                                                               |     |
| WB         | Lasers & Sources                                                                                                                              |     |
| WB1        | Nanotechnology Glass Project - Nanostructuring of Glass Materials by a Femtosecond Pulse Laser                                                | 277 |
| WB2        | Dual Wavelength Fibre Bragg Grating External Cavity Semiconductor Laser Sources for Sensor Application                                        | 281 |
| WB3        | Frequency-Shifted Multiwavelength FBG Laser Sensor                                                                                            |     |
| WB4        | Polarization-Maintaining EDFA for Optical Sensing Application, Composed                                                                       |     |
|            | of PANDA Fiber based Low Loss and Low Cross-Talk Optical Components                                                                           | 289 |
| WB5        | Frequency Noise Reduction in Erbium Doped Fibre Bragg Grating Lasers using Active Electronic Feedback                                         | 293 |
| wc         | Distributed Brillouin Fiber Sensors                                                                                                           |     |
| WC1        | Recent Progress in Brillouin based Fiber Sensor Technology - Correlation-                                                                     | 007 |
| WCO        | based Continuous-Wave Technique                                                                                                               |     |
| WC2<br>WC3 | Brillouin-based Temperature Sensing in Optical Fibres Down to 1 K                                                                             | 301 |
| WUS        | Raman Amplification                                                                                                                           | 305 |
| WC4        | Linear Strain Distribution Dependence of the Brillouin Gain Spectrum                                                                          |     |
| WC5        | 2-Laser Injection-Locking Configuration for Brillouin Fibre Sensors                                                                           |     |
| WD         | Acoustics                                                                                                                                     |     |
| WD1        | Preliminary Investigation of Air-Included Polymer Coatings for Enhanced                                                                       |     |
|            | Sensitivity of Fiber-Optic Acoustic Sensors                                                                                                   |     |
| WD2        | Fibre Optic Polarimetric Detection of Lamb Waves                                                                                              | 321 |
| WD3        | Demonstration of a 16-Sensor Time-Division-Multiplexed Sagnac-<br>Interferometer-based Acoustic Sensor Array with an Amplified Telemetry and  |     |
| 1415.4     | a Polarization-based Biasing Scheme                                                                                                           |     |
| WD4<br>WD5 | Design and Field Test of a 32-Element Fiber Optic Hydrophone System  Design, Development and Construction of Fibre-Optic Bottom Mounted Array |     |
|            | •                                                                                                                                             |     |
| Thur       | sday, 9 May 2002                                                                                                                              |     |
| ThA        | Structural & Mechanical Sensors                                                                                                               | •   |
| ThA1       | The Role of Fiber Sensing Technologies in MEMS/MOEMS                                                                                          | 339 |
| ThA2       | High Bandwidth Multipoint Fibre-Optic Vibrometer for Transient Measurements                                                                   | 343 |
| ThA3       | A Load Cell using an Optical Fiber Bragg Grating with Inherent Mechanical                                                                     |     |
|            | Temperature Compensation                                                                                                                      |     |
| ThA4       | "T-Shaped" Fibre Bragg Grating Sensor Geometry for Strain Based Metrology                                                                     | 351 |
| ThA5       | High Pressure Sensing using Fiber Bragg Gratings Written in Birefringent Side Hole Fiber                                                      | 355 |
|            |                                                                                                                                               |     |

| ThA6             | High Resolution Fiber Laser Sensor for Hydrostatic Pressure                                                                    | 359 |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|-----|
| ThA7             | Transversal Force Sensor using Polarization-Maintaining Fiber Independent                                                      |     |
|                  | of Direction of Applied Force: Proposal and Experiment                                                                         |     |
| ThA8             | Distributed Fibre Measurement using Backscatter Polarimetry                                                                    | 367 |
| ThB              | Interferometers I                                                                                                              |     |
| ThB1             | Commercialization of Interferometric Interrogation Techniques for Fiber Sensing Applications                                   | 371 |
| ThB2             | Polarization Induced Phase Noise in Fiber Optic Interferometers with                                                           |     |
| <b>T</b> I. D.O. | Polarizer based Polarization Diversity Receivers                                                                               | 3/5 |
| ThB3             | Spatially Scanned Interferometric Interrogation of Fiber Bragg Grating Sensors based on Hilbert Transform Processing           | 379 |
| ThC              | Interferometers II                                                                                                             |     |
| ThC1             | Vehicle Weigh-in-Motion using Multiplexed Interferometric Sensors                                                              | 383 |
| ThC2             | Vector Velocimetry by using Fiber-Optic Low Coherence Interferometers                                                          |     |
| ThC3             | Interferometric Inclinometer for Structural Monitoring                                                                         |     |
| ThC4             | Sagnac Interferometer Design for Differential Rotation Measurement                                                             |     |
| ThC5             | Reduction of Residual Signals in Interferometric Fiber Sensors                                                                 |     |
| ThD              | Electromagnetic Sensors I                                                                                                      |     |
| ThD1             | Electromagnetic Field Sensing using Liquid Crystal Optical Fibers                                                              | 403 |
| ThD2             | Optical Current Sensor Application in the Harsh Environment of a                                                               | 407 |
| ThD3             | 120 MVA Power Generator                                                                                                        |     |
| ThD3             | High Accuracy Optical Electric Field and Voltage Sensors                                                                       | 411 |
| I ND4            | Voltage Presence Indicator using ZnS:Mn AC Thin Film Electroluminescent  Device                                                | 415 |
| ThP              | Poster Session II - Fiber Optic Sensor Technology & Applications                                                               |     |
| ThP1             | An Interferometric Fiber Optic Sensor Embedded in a Spark Plug for In-                                                         |     |
|                  | Cyclinder Pressure Measurement in Engines                                                                                      | 419 |
| ThP2             | Localization of a Loss-Inducing Perturbation for a Fiber Optic Alarm-                                                          |     |
|                  | Condition Sensor using an Un-Modulated Light Source                                                                            | 423 |
| ThP3             | Fiber Optic Strain System for Ball Bearings                                                                                    |     |
| ThP4             | Fibre Bragg Grating Smart Bolt Monitoring Creep in Bolted GRP Composite                                                        |     |
| ThP5             | Fiber Optic System for Ship Hull Monitoring                                                                                    | 435 |
| ThP6             | Modelling Strain Dependence of Fluorescence from Doped Optical Fibres:  Application to Neodymium                               | 439 |
| ThP7             | Hydrophobic Alumina Thin Films Formed by the Electrostatic Self-Assembly                                                       |     |
|                  | Monoloayer Process for the Fabrication of Optical Fiber Gas Sensors                                                            | 443 |
| ThP8             | POF-Type Optic Humidity Sensor and Its Application                                                                             |     |
| ThP9             | Study on a New Fiber Optic Glucose Biosensor                                                                                   | 451 |
| ThP10            | An Optical Fibre Sensor for Germicidal Microwave Plasma Powered UV Lamps Output with Potential for On-Line Temperature Control | 455 |
| ThP11            | Distributed Temperature Sensor for Aeronautic Applications                                                                     |     |
| ThP12            | A3 Sensor Multipoint Optical Fibre Water Sensor utilising Artificial Neural                                                    | 439 |
| 1111 12          | Network Pattern Recognition                                                                                                    | 463 |
| ThP13            | Multiplexing of White Light Interferometric Sensors using a Fiber Loop Topology                                                |     |
| ThP14            | Fluorescence based Optical Fibre Fire Alarm System                                                                             |     |
| ThP15            | Equivalent Light Dosimetry in Museums with Blue Wool Standards and                                                             |     |
| ThP16            | Optical FibersInfluence of Ellipticity and Refractive Index of the Core on Sensing Characteristics                             | 475 |
|                  | of Elliptical-Core Fibers                                                                                                      | 479 |
| ThP17            | Field Test of Non Contact High Temperature Fiber Optic Transducer in a Steel Production Plant                                  | AQQ |
| ThP18            | Fuel Combustion Monitoring Apparatus and Method                                                                                |     |
| ThP19            | Measurement of Current, Voltage and Power using Single Quartz Crystal                                                          |     |
| יווו וס          | measurement or ourrent, voitage and rower using single Quartz Orystal                                                          | 431 |

.•

|                | 2                                                                                                                                            |       |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ThP20          | Electrical Current Metering with a Dual Interferometric Configuration and                                                                    | 405   |
| TLD01          | Serrodyne Signal Processing                                                                                                                  |       |
| ThP21<br>ThP22 | Low Cost Electric Field Optical Fiber Detector                                                                                               | 499   |
| 111722         | Explosion Generator                                                                                                                          | 503   |
| ThP23          | A Novel Fiber-Optic Intra-Cavity Sensing Network using a Mode-Locked                                                                         |       |
| 20             | Fiber Ring Laser                                                                                                                             | 507   |
| ThP24          | Background-Noise Reduction in the Infrared Fibre Optic Thermometry                                                                           | 511   |
| ThP25          | Optical Fibre Bragg Grating based Fabry-Perot Interferometer for In-Line                                                                     |       |
|                | Laser Doppler Velocimetry                                                                                                                    | 515   |
| ThP26          | Frequency Modulation Properties of Erbium Doped DFB Fiber Lasers using                                                                       |       |
|                | Cavity Strain                                                                                                                                |       |
| ThP27          | Code Division Multiplexing in Interferometric Optical Fiber Sensor Networks                                                                  |       |
| ThP28          | Improved Performance Interferometer Designs for Optical Coherence Tomography                                                                 | 527   |
| ThP29          | Macrobend Loss Reduction of a Fiber Interferometer using Graded-Index  Multimode Fiber                                                       | 521   |
| ThP30          | Transversely Loaded Bragg Grating Pressure Transducer with Mechanically                                                                      | 551   |
| 1111 30        | Enhancing the Sensitivity                                                                                                                    | 535   |
|                | ny, 10 May 2002                                                                                                                              |       |
| FA             | Electromagnetic Sensors II                                                                                                                   |       |
| FA1            | Stability of Fiber Bragg Grating Sensors for Integration into High-Voltage                                                                   | F 4.4 |
| <b>540</b>     | Transformers for Online Monitoring                                                                                                           | 541   |
| FA2            | An Optical Current Transducer having Linearity Better than 0.4% from 4 to 108,000 A                                                          | 545   |
| FA3            | Differential Current Relaying System with Optical Phase Detection using Flint                                                                |       |
|                | Glass Fiber Type Optical Current Transformers                                                                                                | 549   |
| FA4            | Application of the NIMI Technique to the 3x3 Sagnac Fibre Optical Current                                                                    |       |
|                | Sensor – Experimental Results                                                                                                                | 553   |
| FA5            | Formulas Describing Error Induced by Fiber Linear-Birefringence in Fiber-Optic                                                               |       |
| FAC            | Current Sensors                                                                                                                              | 55/   |
| FA6            | Low DC Electrical Currents                                                                                                                   | 561   |
|                |                                                                                                                                              |       |
| FB             | Devices & Lasers I                                                                                                                           |       |
| FB1            | Photonic Crystal Fibres for Sensor Applications                                                                                              |       |
| FB2            | Sensing Applications of Arrayed Waveguide Grating Devices                                                                                    | 569   |
| FB3            | High Sensitivity Sensors utilising Characteristics of Dispersion-Turning-Point of Long-Period Gratings in B/Ge Co-Doped Fibre                | 573   |
| FB4            | Reflectometry based on Two-Photon Absorption of a Silicon Avalanche Photodiode                                                               |       |
| FB5            | Cavity Ring-Down in a Fibre Amplifier Loop and Combination with Wavelength                                                                   |       |
| . 55           | Modulation Spectroscopy                                                                                                                      | 581   |
|                |                                                                                                                                              |       |
| FC             | Devices & Lasers II                                                                                                                          | FAP   |
| FC1            | Left Handed Metamaterials with Negative Index of Refraction  The Effects of Thermal and Polarization Fluctuations on 3x3 Coupler Performance |       |
| FC2            | The Effects of Thermal and Polarization Fluctuations on 3x3 Coupler Performance                                                              | 58/   |

Postdead Line Popers

FC3

Noise in a Phase Sensitive Strain Monitoring System .....