

Marc Lassonde Editor

Approximation, Optimization and Mathematical Economics

With 32 Figures and 14 Tables

Table of Contents

	n the Banach Contraction Principle for Multivalued Mappings	1
J.	Andres, L. Górniewicz	
1	Preliminaries	2
2	Existence of Fixed Points	4
3	Topological Structure of Fixed Point Sets	9
4	Topological Essentiality	15
5	Applications	18
Tł	ne Second-order in Time Continuous Newton Method	25
H.	Attouch, P. Redont	
1	Introduction	25
2	Global Existence	26
3	Convergence of the Trajectories	3 0
4	A Few Remarks	33
Po	olynomial Density in $\mathbf{L}_{\mathbf{p}}(\mathbf{R}, \mathbf{d}\mu)$ and Representation	
of	All Measures Which Generate a Determinate Hamburger	
\mathbf{M}	oment Problem	37
A.	Bakan	
1	Introduction	37
2	Main Results	38
3	New Version of M. Krein's Theorem	39
4	Auxiliary Lemmas	41
5	Proof of Theorem 2.1	42
Cł	naracterizing the Premium at the Equilibrium	
of	a Reinsurance Market with Short Sale Constraints	47
G.	Bernis, E. Jouini	
1	Introduction	47
2	The Reinsurance Market	49
3	Equilibrium on Reinsurance Market	52
4	Sketch of the Proof	55
Co	omputational Aspects of Primal Dual Proximal Algorithms	
	r M-estimation with Constraints	59
M.	.L. Bougeard	
1	Introduction and Motivation	59
2	Proximal Resolution and Algorithms	6 0
3	Implementation	64
4	Computational Results	65
5	Conclusions	68

_	oproximate Saddle Point Assertions for a General Class Approximation Problems	71
	W. Breckner, M. Sekatzek, Chr. Tammer	
1	Introduction	71
2	Terminology and Notations	72
3	Formulation of the Vector-Valued Approximation Problem	74
4	Approximate Saddle Point Theorems	75
5	Conclusions	79
	ends in Hölder Approximation	81
1	Introduction	81
2	Summation of Fourier Series	83
3	Best Trigonometric Approximation	85
4	Best Algebraic Approximation	89
5	Other Approximation Processes	90
	assical Overlapping Generations Models with Incomplete	
	arkets	97
<i>M</i> .	Florenzano, P. Gourdel, M. R. Páscoa	
1	Introduction	97
2	The Model	98
3	Existence Results	
4	The Truncated Economy	
5	Fatou's Lemma and the Limiting Argument	100
	sisson-Hermite Representation of Solutions for the Equation	
	$Fu(x,t) + \Delta_x u(x,t) - 2x \cdot \nabla_x u(x,t) = 0 \dots$ Forzani, W. Urbina	109
1	Introduction	109
2	Proofs	111
	rmulae for the Sensitivity Analysis of Linear Programming	
-	oblems	117
	Gauvin	117
1	The Right-Hand Side Vector	
2	The Cost Vector	
3	The Matrix Coefficients	120
	umerical Aspects in Locating the Corner of the L-curve Guerra, V. Hernández	121
1	Introduction	121
2	Difficulties of the Standard Method	123
3	Fitting with the Help of Conics	124
4	Numerical Results	128

	Table of Contents 1X
	eometric Design by Means of a G^2 Continuous A-Spline 133 Hernández, S. Behar Jequín, J. Estrada Sarlabous
1	Introduction
2	The Default Cubic A-Spline
3	Constructing a Nondefault Cubic A-Spline
4	Conclusions
	ne Veto Mechanism Revisited
1	Introduction
2	The Restricted Veto Mechanism
3	The Pondered Veto Mechanism
4	Final Remarks
A	Relaxed Cutting Plane Algorithm for Solving Fuzzy
\mathbf{V}	riational Inequalities
1	Introduction
2	The Model
3	An Algorithm
4	Solving Program VI^k
4	Solving Flogram v I' 102
	wards Metric Theory of Metric Regularity 165 Ioffe
	ape Extraction by Nonlinear Diffusion
1	Introduction
2	The Scale-Space as Image Processing Tool
3	Nonlinear Diffusion and Object Segmentation
4	Summary Conclusions
	cistence of Cooperative Equilibria in Strategic Form Games. 191 Keiding
1	Introduction
2	Definitions
	A General Balancedness Theorem 194
Ţ	
4	Application to Existence Theory (1): Strong Nash Equilibria 197
5	Application to Existence Theory (2): Strong Coalition Proof Nash
6	Equilibrium
	· ·
	Note on Entropy Optimization
1	Introduction
2	Decomposability of the Natural Workspace

J. S. Rodríguez, J. A. Moreno

	Table of Contents	XI	
2 3 4 5	Radial Basis Functions	277 281	
In	Staircase Algorithm and Boundary Valued Convex Interpolation by Gregory's Splines		
· 1	Staircase Algorithm for Two-Term Problems		
	eneric Existence of Local Political Equilibrium		
1 2 3 4 5	Introduction	298 300 301	
	he Feasible Set in Generalized Semi-Infinite Optimization \dots Stein	309	
1 2 3 4	Introduction	312 317	
The Complexity of High-Order Interior-Point Methods for Solving Sufficient Complementarity Problems			
1 2 3 4	Introduction	331 333	
	onstructing Separable Objective Functions	343	
A. 1 2 3 4 5	Tangian Introduction	344 344 348	
	Accuracy of the Approximate Preference	350	

XII Table of Contents

Po	lar Forms, p-Values, and the Core	357
V.	A. Vasil'ev	
1	Banach Lattice V and Sublattices V^n , $V^{(n)}$, and pV	357
2	Modified Shapley Value and Shapley Functional	359
3	Generalized Owen Extension	362
4	Polar Forms of the Homogeneous Polynomial Games	
	and the Shapley Value: A Representation Theorem	363
5	On Some Applications and Generalizations of the Polar Forms	365
Or	thogonal Matrix Polynomials, Connection Between	
\mathbf{Re}	currences on the Unit Circle and on a Finite Interval	369
	O. Yakhlef, F. Marcellán	
1	Introduction	369
2	The Results	372
3	The Tools and the Proofs	374
Fa	st Least Squares Approximation Using Tensor Products	
of	Functions and Linear Forms	383
A.	Zimmermann	
1	Introduction	
2	Approximation with Functions	383
3	Tensor Products	385
4	Fast Approximation Using Tensor Products	387
5	Multiple Tensor Products	391
6	Summary	392