Fuad Aleskerov • Hasan Ersel Dmitri Piontkovski

Linear Algebra for Economists

Contents

t

1	Some Basic Concepts				
	1.1	Introduction		1	
		1.1.1	Linearity	1	
		1.1.2	System of Coordinates on the Plane \mathbb{R}^2	2	
	1.2	Microe	conomics: Market Equilibrium	7	
		1.2.1	Equilibrium in a Single Market	8	
		1.2.2	Multi-Market Equilibrium	9	
	1.3			10	
		1.3.1	A Simple Macroeconomic Policy Model		
			with One Target	11	
		1.3.2	A Macroeconomic Policy Model		
			with Multiple Targets and Multiple Instruments	13	
	1.4	Proble	ms	15	
•	¥7 4			17	
2		Vectors and Matrices			
	2.1			17	
		2.1.1	Algebraic Properties of Vectors	18	
		2.1.2	Geometric Interpretation of Vectors	10	
		010	and Operations on Them	19	
		2.1.3	Geometric Interpretation in \mathbb{R}^2	22	
	2.2		oduct of Two Vectors	23	
		2.2.1	The Length of a Vector, and the Angle		
			Between Two Vectors	24	
	2.3		onomic Example: Two Plants	27	
	2.4	Another Economic Application: Index Numbers		29	
	2.5		es	30	
		2.5.1	Operations on Matrices	31	
		2.5.2	Matrix Multiplication	32	
		2.5.3	Trace of a Matrix	35	
	2.6	Transpose of a Matrix		35	
	2.7	Rank of a Matrix 3			
	2.8	Elementary Operations and Elementary Matrices 3			
	2.9	Problei	ns	44	

3	Square Matrices and Determinants		
	3.1	Transformation of Coordinates	49
		3.1.1 Translation	49
		3.1.2 Rotation	50
	3.2	Square Matrices	51
		3.2.1 Identity Matrix	51
		3.2.2 Power of a Matrix and Polynomial of a Matrix	52
	3.3	Systems of Linear Equations: The Case of Two Variables	52
	3.4	Determinant of a Matrix	53
		3.4.1 The Basic Properties of Determinants	57
		3.4.2 Determinant and Elementary Operations	60
	3.5	Problems	61
4	Inve	rse Matrix	65
	4.1	Inverse Matrix and Matrix Division	65
	4.2	Rank and Determinants	70
	4.3	Problems	71
5	Suct	ems of Linear Equations	75
3	5.1	The Case of Unique Solution: Cramer's Rule	78
	5.2	Gauss Method: Sequential Elimination of Unknown Variables	80
	5.3	Homogeneous Equations	85
	5.3 5.4	Problems	87
	5.4	5.4.1 Mathematical Problems	87
		5.4.2 Economic Problems	89
6		ar Spaces	91
	6.1	Linear Independence of Vectors	92
		6.1.1 Addition of Vectors and Multiplication	
		of a Vector by a Real Number	96
	6.2	Isomorphism of Linear Spaces	97
	6.3	Subspaces	98
		6.3.1 Examples of Subspaces	98
		6.3.2 A Method of Constructing Subspaces	99
		6.3.3 One-Dimensional Subspaces	99
		6.3.4 Hyperplane	99
	6.4	Coordinate Change	100
	6.5	Economic Example: Production Technology Set	101
	6.6	Problems	104
7	Eucl	idean Spaces	107
	7.1	General Definitions	107
	7.2	Orthogonal Bases	109
	7.3	Least Squares Method	117
	7.4	Isomorphism of Euclidean Spaces	119
	7.5	Problems	120

8	Linear Transformations		123
	8.1	Addition and Multiplication of Linear Operators	130
	8.2	Inverse Transformation, Image and Kernel	
		under a Transformation	132
	8.3	Linear Transformation Matrices with Respect	
		to Different Bases	135
	8.4	Problems	137
9	Eige	nvectors and Eigenvalues	141
-	9.1	Macroeconomic Example: Growth and Consumption	148
		9.1.1 The Model	148
		9.1.2 Numerical Example	149
	9.2	Self-Adjoint Operators	150
	9.3	Orthogonal Operators	153
	9.4	Quadratic Forms	156
	9.5	Problems	161
10	Lino	ar Model of Production in a Classical Setting	165
10	10.1	Introduction	165
	10.1	The Leontief Model	169
	10.2	Existence of a Unique Non-Negative Solution	107
	10.1.	to the Leontief System	172
	10.4	Conditions for Getting a Positive (Economically	
		Meaningful) Solution to the Leontief Model	176
	10.5	Prices of Production in the Linear Production Model	179
	10.6	Perron–Frobenius Theorem	184
	10.7	Linear Production Model (continued)	187
		10.7.1 Sraffa System: The Case of Basic Commodities	189
		10.7.2 Sraffa System: Non-Basic Commodities Added	191
	10.8	Problems	191
11	T :====	ar Programming	195
11		Diet Problem	195
	11.2	Linear Production Model	195
	11.2	Convexity	200
	11.4	Transportation Problem	200
	11.5	Dual Problem	200
	11.6	Economic Interpretation of Dual Variables	209
	11.7	A Generalization of the Leontief Model: Multiple	207
	11.7	Production Techniques and Linear Programming	211
	11.8	Problems	212
			217
A		ral Numbers and Induction	217
	A.1	Natural Numbers: Axiomatic Definition	217
	A.2	Induction Principle	219
	A.3	Problems	223

B	Methods of Evaluating Determinants		
	B .1	Transformation of Determinants	225
	B.2	Methods of Evaluating Determinants of High Order	226
		B.2.1 Reducing to Triangular Form	226
		B.2.2 Method of Multipliers	227
		B.2.3 Recursive Definition of Determinant	228
		B.2.4 Representation of a Determinant as a Sum	
		of Two Determinants	230
		B.2.5 Changing the Elements of Determinant	230
		B.2.6 Two Classical Determinants	232
	B .3	Problems	233
С	Com	plex Numbers	237
	C.1	Operations with Complex Numbers	238
		C.1.1 Conjugation	238
		C.1.2 Modulus	239
		C.1.3 Inverse and Division	239
		C.1.4 Argument	239
		C.1.5 Exponent	241
	C.2	Algebraic Equations	241
	C.3	Linear Spaces Over Complex Numbers	
	C.4	Problems	245
D	Pseud	loinverse	249
_	D.1	Definition and Basic Properties	250
		D.1.1 The Basic Properties of Pseudoinverse	251
	D.2	Full Rank Factorization and a Formula for Pseudoinverse	252
	D.3	Pseudoinverse and Approximations	255
	D.4	Problems	259
Е	Answ	ers and Solutions	263
Refe	erence	s	275
Inde	ex		277