Jörn Schönberger

Model-Based Control of Logistics Processes in Volatile Environments

Decision Support for Operations Planning in Supply Consortia

Contents

1	Process Planning in Supply Consortia				
	1.1	Value Creation in Supply Consortia	2		
	1.2 Supply Consortia Resource Deployment Paradigms				
		1.2.1 Centralized Planning	7		
		1.2.2 Autonomous Control	8		
		1.2.3 Hierarchical Planning for Consortium-Type Governance	8		
	1.3 Transport Processes in Supply Consortia: Relevance				
	and Challenges				
		1.3.1 Transport Process Derivation in a Supply Consortium	11		
		1.3.2 Process Endangering Events and Data Uncertainty	17		
Part	t I M	lodel-Based Transport Process Planning: Approaching the Limits			
2	Trar	nsport Processes and Uncertainty	23		
	2.1	Formalization of Uncertainty within Decision Problems	23		
	2.2	Operational Management of Peaks in Transport Demand	24		
	2.3	A Dynamic Vehicle Routing Problem with Subcontractor Options	27		
		2.3.1 General Scenario Outline	27		
		2.3.2 Coordinator's and Service Agent's Interest Integration	28		
		2.3,2,1 Reference Configuration	29		
		2.3,2.2 Penalization of Late Arrivals	29		
		2.3.3 Dispatching Task of the Fleet-Managing Agent	30		
		2.3.4 Generation of Parameterized Test Cases	32		
	2.4	Conclusions	34		
3	Decision Support: Applying the State-of-the-Art				
	3.1	Decision Support Systems and Transport Process Planning			
		3.1.1 Process Control by Decision Support Systems	36		
		3.1.2 DSS-based Control of Transport Process	37		
		3.1.3 Event-Handling in DSS for Dynamic Transport			
•		Dispatching	39		

		3.1.4	Challenges in Dynamic Disposition and Dispatching	40
		3.1.5	Rolling Horizon Disposition and Dispatching	41
	3.2	Online	Planning in HARD- and PEN-Configurations	42
		3.2.1	Memetic Algorithm for the Transportation	
			Plan Generation	42
		3.2.2	Constraint Handling Techniques	43
	3.3	Simula	tion Experiments Report	44
		3.3.1	Simulated Scenarios	45
		3.3.2	Performance Indicators	45
			3.3.2.1 Process Quality Indicators	45
			3.3.2.2 Financial Process Evaluation Indicators	47
		3.3.3	Computational Assessment of HARD and PEN	47
			3.3.3.1 Online-Process Quality Assessment	48
			3.3.3.2 Offline Process Quality Assessment	51
			3.3.3.3 Online-Evaluation of the Process Costs	53
			3.3.3.4 Offline-Assessment of the Process Costs	53
		3.3.4	Varying Penalties	55
	3.4	Conclu	ısions	58
Dor	4 TT T	Tytondi	ng the Application Roundaries of Model Resed Planning	
1 41		Atenun	ig the Application Douldaries of Model-Dascu Flamming	
4	Deci	sion Su	pport in Principal-Agent-Relationships	63
	4.1	Adapti	ve Process Control Systems	64
		4.1.1	Reliable and Unreliable Adaptive Systems	64
		4.1.2	Process Controller of Adaptive Systems	67
		4.1.3	System Intervention by Image Modification	70
		4.1.4	Image Modification and Event Handling in DSS	74
	4.2	Image	Modification and Process Re-Planning	74
		4.2.1	Image Modification and Integrated Principal-Agent	
			Resource Allocation	75
		4.2.2	Preparing Integrated Principal-Agent Resource Allocation	77
		4.2.3	Algorithmic Update of the Agent's Decision Model	79
	4.3	Summ	ary	81
5	Ada	ntive C	ontrollers for Mathematical Optimization Models	83
•	5.1	Prepar	ations	84
		5.1.1	System Development Corridor	84
		5.1.2	Definition of a Suitable Intensity Function	84
	5.2	Accou	nting Scheme Adaptation	85
	0.2	5.2.1	Accounting Schemes	85

Objective Function Re-Parameterization 5.2.2 86 Adaption of the Accounting Scheme to the Current 5.2.3 Process Punctuality 86 Adaptive Exercising of LSP-Options 5.3 87 5.3.1 Decision Model Preprocessing and Presolving 88

	5.3.2	An Adju	stable Constraint Family	88
	5.3.3	Preparin	g the Coordinator Agent's Interventions	89
	5.3.4	Interven	tion Specification	90
		5.3.4.1	Random Request Sequencing (RRS)	91
		5.3.4.2	Distance-to-be-Bridged Sequencing (DBS)	91
		5.3.4.3	Vehicle Availability Sequencing (VAS)	91
		5.3.4.4	Remaining Time Based Sequencing (RTS)	92
		5.3.4.5	Isolation Based Sequencing (IBS)	92
5.4	Evalua	tion and A	Assessment of the Model Controllers	94
	5.4.1	Simulate	ed Scenarios	94
	5.4.2	Presenta	tion and Discussion of Results	95
		5.4.2.1	Parameterization of SDAD and CSAD	95
		5.4.2.2	Online Comparison of Static and Adaptive	
			Strategies	98
		5.4.2.3	Offline Comparison of Static and Adaptive	
			Strategies 1	100
		5.4.2.4	Online-Evaluation of the Process Costs	101
		5.4.2.5	Offline Cost Comparison of the Four Strategies 1	102
· 5.5	Hybrid	lization of	f Model Adaptation Strategies	103
	5.5.1	Paramete	erization of the Hybrid Strategy	103
	5.5.2	Online P	Performance Comparison	104
	5.5.3 •	Offline A	Assessment	105
	5.5.4	Cost Eva	aluation	107
5.6	Summ	ary of Fin	dings 1	108

Part III Adaptive Model Controllers in Action

6	Res	ponsive	ness Improvement	l	
	6.1	Flexib	ility and Logistic Operations	2	
		6.1.1	Literature Review	2	
		6.1.2	Flexible Plans and Flexible Systems	3	
			6.1.2.1 Planflexibility	3	
			6.1.2.2 Systemflexibility	5	
	6.2	Quanti	ification of Flexibility 116	5	
		6.2.1	Measures for Planflexibility	5	
		6.2.2	Systemflexibility Quantification 117	7	
	6.3	Comp	utational Experiments 118	3	
		6.3.1	Experimental Setup	3	
		6.3.2	Results)	
	6.4	Conclu	usion of Findings 12	I	
7	Ner	s Reduction in Re-Scheduling	3		
	7.1	7.1 External and Internal Nervousness			
	7.2	Sched	ule Transition Nervousness 124	1	
	7.3	Transp	oort System Nervousness 126	5	

	7.4	Flexibility and Nervousness of Logistic Operations 1	27
	7.5	Numerical Experiments 1	27
	7.6	Conclusions 1	31
8	Imp	acts on Robustness1	33
	8.1	Robustness in the Literature	34
		8.1.1 Robustness of Schedules	34
		8.1.2 Robustness of Systems 1	35
		8.1.3 Achieving, Implementing and Conserving Robustness 1	36
		8.1.4 Measuring and Quantification of Robustness	37
		8.1.4.1 Planrobustness	38
		8.1.4.2 Systemrobustness 1	38
	8.2	Definition of Robustness 1	39
		8.2.1 Basic Terms 1	39
		8.2.2 Evaluation Schemes and Acceptable Updates 1	40
		8.2.3 Evaluation of Disturbances	40
		8.2.3.1 Controlling the Variation between the Original	
		and its Update 1	40
		8.2.3.2 Referential Variation	42
		8.2.4 Comparison of Input-Output-Variations	43
		8.2.4.1 Comparison of Update and Original	43
		8.2.4.2 Comparison of Updates with a Fixed Reference	
		Schedule	44
		8.2.5 The Role of the Schedule Update Strategy 1	45
	8.3	Robustness of Schedules and Systems 1	45
		8.3.1 Robust Schedules	45
		8.3.2 Robust Systems 1	46
		8.3.3 Robustness and Flexibility 1	47
	8.4	Quantification of Robustness 1	48
		8.4.1 Planrobustness Quantification 1	48
		8.4.2 Quantification of Systemrobustness 1	49
	8.5	Robustness in a Transportation Scenario 1	49
		8.5.1 Setup of the Simulation Experiments 1	50
		8.5.2 Presentation and Discussion of Simulation Results 1	51
	8.6	Conclusions 1	55
9	Sum	nmary and Conclusions1	57
	9.1	Principals, Agents and Dynamic Decision Problems 1	57
	9.2	Innovative Methods for Decision Derivation and Evaluation 1	58
	9.3	Principal-Agent Relationships: Improved Process Quality 1	60
Ref	erenc	ees	63
Ind	ex		77

,