Assessment of the Risk of Amazon Dieback

Walter Vergara and Sebastian M. Scholz, editors

C 264166

THE WORLD BANK Washington, D.C.

Contents

f, r

Preface	ix
Acknowledgments	xi
Acronyms and Abbreviations	xiii
1. Introduction	1
Objective	1
[,] Scope	1
Geographical Domain	3
Data Sources	3
2, Modeling Future Climate in the Amazon Using the Earth Simulator	7
The Atmospheric General Circulation Model Simulated by the Earth Sim	ulator7
Comparison of Observed and Simulated Data for Present Time over the Amazon Basin	
Projection of Future Climate over the Amazon Basin	9
3. Assessment of Future Rainfall over the Amazon Basin	
Method for Estimating Probability Density Functions	
General Circulation Model Simulation of Current and Future Sea Surface Temperature Indexes	
Probability Density Functions for Future Sea Surface Temperature Index	es22
4. Analysis of Amazon Forest Response to Climate Change	
Introduction	
The Lund-Potsdam-Jena Managed Land Dynamic Global Vegetation and Water Balance Model	1 26
Simulation of Vegetation State in the Amazon Basin	
Response of Biomass to Projected Changes in Rainfall in the Different Geographical Domains	
Probability Function for Amazon Forest Biomass Change	
Simulation of Sensitivity to CO ₂ and Rooting Depth	
Changes in Transpiration	
Mechanisms of Potential Amazon Dieback	
Changes in Lightning-Caused Wildfires	
5. Interplay of Climate Impacts and Deforestation in the Amazon	
Regional Land Use as a Driver in the Stability of the Amazon Rainforest	
Scenarios	50
Models Used	
Simulations	
Biome Response to Different Forcings	53

Figure 4.9. Cumulative Distribution Functions (Upper Panel) and Probability Density Functions (Lower Panel) for Change in Vegetation Carbon in Southern Amazonia (from 1970–2000 to 2070–2100)	37
Figure 4.10. Cumulative Distribution Functions (Upper Panel) and Probability Density Functions (Lower Panel) for Change in Vegetation Carbon in Northeastern Brazil (from 1970–2000 to 2070–2100)	
Figure 4.11. Cumulative Distribution Functions (Upper Panel) and Probability Density Functions (Lower Panel) for Change in Vegetation Carbon in Southern Brazil (from 1970–2000 to 2070–2100)	39
Figure 4.12. Scenario Analysis of the Influence of Deep and Shallow Roots under Climate and CO_2 Effects and Climate-Only Effects	43
Figure 4.13. Transpiration (in mm yr ⁻¹) for the Different Vegetation Types Is Dependent on Precipitation and Temperature	44
Figure 4.14. Vegetation Change at Local Scale in a Grid Cell in Northeastern Amazonia	45
Figure 4.15. Projected Climatic Fire Danger for the HadCM3 (Blue) and the MRI CGCM 2.3.2a (Red)	·46
Figure 4.16. Simulated Climatic Fire Danger under the MRI CGCM 2.3.2a (Top) and the HadCM3 (Bottom) Climate Scenario Using the SRES A2 Emission Scenario	47
Figure 4.17. Annual Total Carbon Emission from Wildfires as Simulated by LPJmL-SPITFIRE for the Eastern Amazon Region (for HadCM3, MRI CGCM 2.3.2a, and SRES-A2)	48
Figure 5.1. Biome-Climate Equilibrium States in South America for 20% (a), 50% (b), and 100% (c) Amazon Deforestation Scenarios	53
Figure 5.2. Remaining Area of Potential Tropical Forest, Seasonal Tropical Forest, Savanna, Caatinga, and Semi-Desert Biomes	55
Figure 5.3. Grid Point for 75% Consensus on Future Condition of Tropical South American Biomes in Relation to Current Potential Vegetation	56
Figure 5.4. Grid Point for 75% Consensus on Projecting the Future Condition of Tropical South American Biomes in Relation to Current Potential Vegetation	57
Figure 5.5. Grid Point for 75% Consensus on Future Condition of Tropical South American Biomes in Relation to Current Potential Vegetation	58
Figure A1.1. Schematic Illustration of SRES Scenarios	66
Figure A1.2. Scenarios for GHG Emissions from 2000 to 2100 (in the Absence of Additional Climate Policies) and Projections of Surface Temperatures	68
Figure A2.1. Rainfall-Derived Model Probability Density Functions for the Eastern Amazonia Region (EA)	72
Figure A2.2. Rainfall-Derived Model Probability Density Functions for the Northeast Brazil Region (NEB)	73
Figure A2.3. Rainfall-Derived Model Probability Density Functions for the Northwest Amazonia Region (NWA)	74
Figure A2.4. Rainfall-Derived Model Probability Density Functions for the Southern Amazonia Region (SAz)	75
Figure A2.5. Rainfall-Derived Model Probability Density Functions for the Southern Brazil Region (SB)	76

,

Figure A2.6. Sea Surface Temperature (ANSG)-Derived Model Probability Density Functions	77
Figure A2.7. Sea Surface Temperature (PEWG)-Derived Model Probability Density Functions	78
Figure A2.8. Sea Surface Temperature (ANSG and PEWG)-Derived Model Probability Density Functions	79
Figure A2.9. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Eastern Amazonia Region (EA) over the 21 st Century	80
Figure A2.10. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Northeast Brazil Region (NEB) over the 21 st Century	81
Figure A2.11. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Northwest Amazonia Region (NWA) over the 21 st Century	82
Figure A2.12. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Southern Amazonia Region (SAz) over the 21 st Century	83
Figure A2.13. Changes in Modeled Rainfall Cumulative Distribution Functions and Probability Density Functions for the Southern Brazil Region (SB) over the 21 st Century	84

5

ł