Communication in Mechanism Design

A Differential Approach

STEVEN R. WILLIAMS

University of Illinois, Urbana-Champaign

Contents

ref	ace	• 15 ⁴	page xi			
Acknowledgment						
1	Introduction					
	1.1	The Model of a Mechanism	1			
		1.1.1 Example: The Competitive Mechanism	6			
		1.1.2 Example: Mechanisms and Noncooperative Solution				
		Concepts	8			
	1.2	Encoding and Product Structure	13			
		1.2.1 Product Structure and Noncooperative Solution				
		Concepts	16			
		1.2.2 Example: The Efficient Level of a Public Good	18			
	1.3	A Theme in Differential Equations	24			
		1.3.1 Example: Does a Given Mapping Represent Inverse				
		, Demand?	25			
	1.4 Investigating Mechanisms Using Calculus		27			
		1.4.1 Example: Selecting the Efficient Level of a Public Good				
		for Restricted Valuation Functions	30			
	1.5	Overview of Text	34			
2	Classical Concepts and Results					
	2.1	Distribution, Foliation, and Mapping	35			
		2.1.1 Example: A Discontinuous Distribution \mathcal{D} for Which				
		the Equivalence in Figure 1.4 Holds	37			
	2.2	Integrability	38			
		2.2.1 Evample: Integrability and the Fauglity of Mixed Partials	40			

viii Contents

	2.3	A Geometric Interpretation of Integrability	42	
		2.3.1 Example: Integrable and Nonintegrable Distributions	43	
	2.4	The Frobenius Theorem		
	2.5	The Proof of the Frobenius Theorem	52	
		2.5.1 The Case of $c = 1$ and $d = 2$	52	
		2.5.2 The General Case	54	
	2.6	Obstacles to Global Equivalence	57	
		2.6.1 Example: The Nonexistence Globally of the Mapping		
		$u_{(c)}$	59	
		2.6.2 A Subtlety of Submanifolds	61	
		2.6.3 Example: A Maximal Integral Manifold Need Not Be a		
		Submanifold	63	
	2.7	A Global Construction of Mapping	65	
		2.7.1 Example: Consumer Demand	66	
		2.7.2 Example: A Transverse Plane May Not Exist Globally	69	
3	App	Application to Mechanisms		
	3.1	Two Examples	74	
		3.1.1 Example: Cournot Duopoly with Quadratic Cost	75	
		3.1.2 Example: Exchange Economy with Quadratic Utility	80	
	3.2	Direct Sum, Product Structure, and Message Process	85	
		3.2.1 The Duality between Integrability Condition (ii) of		
		Direct Sum and Partitioning Condition (iii) of		
		Product Structure	86	
		3.2.2 Example: Nonintegrability of the Direct Sum $\mathcal D$ and the		
		Failure of the Product Sets to Partition Θ	89	
	3.3	Message Process⇒Product Structure⇒Direct Sum	90	
	3.4	A Modified Frobenius Theorem	92	
		3.4.1 Direct Sum⇒Message Process Locally	96	
	3.5	Proof of the Theorem for Mechanism Design	99	
		3.5.1 Example: $n = 2$ and $c_1 = d_1 = c_2 = d_2 = 1$	101	
		3.5.2 The General Case	105	
	3.6	Global Product Structure	108	
		3.6.1 Example: Defining a Message Process Using Partitions	109	
		3.6.2 A Test for Product Structure	111	
		3.6.3 Global Product Structure in the Case of $n = 2$	113	
		3.6.4 Global Product Structure for Arbitrary n	117	
	3.7	Differential Ideal	119	
		3.7.1 Example: Properties (iii) of Differential Ideal and of		
		Product Structure	121	

	•
Contents	1X
Contents	

4	Realizing a C^{∞} Mapping			125	
	4.1	Necessa	ry and Sufficient Conditions	127	
		4.1.1 E	quations for Realization on the Objective F	130	
		4.1.2 N	lecessary and Sufficient Conditions Using		
			Differential Ideal	132	
		4.1.3 T	he Multiplicity of Mechanisms	133	
	4.2	A Lower Bound on Message Space Dimension		136	
		4.2.1 E	xample: Existence of a Mechanism of Profile (1, 1)		
		T	hat Realizes f in the Case of $n = 2$ and		
		di	$im \Theta_1 = dim \Theta_2 = 2$	137	
		4.2.2 C	hen's Bound on Minimal Message Space Dimension	140	
	4.3	Exampl	e: Realizing an Implicitly Defined Function	142	
		4.3.1 A	Special Case of (4.37): Realizing a Walrasian		
		Α	llocation	145	
		4.3.2 R	ealizing a Non-Walrasian Pareto Optimal Allocation	146	
		4.3.3 D	Piscussion	148	
	4.4	Genericity		150	
		4.4.1 T	he Proof of the Genericity Result	151	
		4.4.2 T	he Information Collected in Realizing a Generic F	154	
	4.5	Exampl	le: Realizing a Walrasian Allocation	156	
	4.6	159			
		4.6.1 T	he Competitive Mechanism with Net Trades as		
		N	1 essages	162	
		4.6.2 P	roduct Structure, Direct Sum, and Differential Ideal		
		ir	n Realizing Walrasian Prices	164	
		4.6.3 k	= 2 Goods and n Agents	168	
		4.6.4 T	he Case of Cobb-Douglas Utility	170	
		4.6.5 k	= 3 Goods and $n = 2$ Agents	171	
		4.6.6 T	he General Case	173	
		_	le: Team Decision Problems	175	
	4.8	8.8 Example: Implementation in Privacy Preserving Strategies			
	4.9	4.9 Genericity and the Theory of Organizations			
Bib	liogra	phy		191	
Ind	ndex				