Peter Bogetoft • Lars Otto

Benchmarking with DEA, SFA, and R

Contents

1	Intro	oduction to Benchmarking
	1.1	Why benchmark
		1.1.1 Learning
		1.1.2 Coordination
		1.1.3 Motivation
	1.2	Ideal evaluations
	1.3	Key Performance Indicators and Ratios
	1.4	Technology and efficiency 1
	1.5	Many inputs and outputs
	1.6	From effectiveness to efficiency
	1.7	Frontier models
		1.7.1 A simple taxonomy
		1.7.2 Pros and cons
	1.8	Software
	1.9	Summary 20
	1.10	Bibliographic notes
2	Effic	iency Measures
	2.1	Introduction
	2.2	Setting
	2.3	Efficient production
	2.4	Fairrell efficiency
		2.4.1 Non-discretionary inputs and outputs
		2.4.2 Using Farrell to rank firms
		2.4.3 Farrell and Shephard distance functions
	2.5	Directional efficiency measures
	2.6	Efficiency measures with prices
		2.6.1 Cost and input allocative efficiency 36
		2.6.2 Revenue and output allocative efficiency
		2.6.3 Profit efficiency
	2.7	Dynamic efficiency
		•

Contents

X

	2.8	Structural and network efficiency	45
	2.9	Choice between efficiency measures	48
		Summary	50
		Bibliographic notes	50
		Appendix: More advanced material on efficiency measures	51
	4.12	2.12.1 The rationale of efficiency	
		2.12.2 Axiomatic characterization of efficiency measures	
		2.12.2 Axiomatic characterization of efficiency measures	33
3		luction Models and Technology	57
	3.1	Introduction	57
	3.2	Setting	57
	3.3	The technology set	59
	3.4	Free disposability of input and output	60
	3.5	Convexity	64
	3.6	Free disposal and convex	68
	3.7	Scaling and additivity	70
	3.8	Alternative descriptions of the technology	74
	3.9	Summary	77
	3.10	Bibliographic notes	78
	3.11	Appendix: Distance functions and duality	78
4	Doto	Envelopment Analysis DEA	81
•	4.1	Introduction	81
	4.2	Setting	82
	4.3	Minimal extrapolation	82
	4.4	DEA technologies	85
	4.5	DEA programs	90
	4.6	Peer units	93
	4.0	4.6.1 Numerical example in R	95
	47		98
	4.7	DEA as activity analysis	99
	4.8	Scale and allocative efficiency	99
		4.8.1 Scale efficiency in DEA	
	4.9	Summary	
		Bibliographic notes	
	4.11	Appendix: More technical material on DEA models	
		4.11.1 Why the $T^*(\gamma)$ sets work	
	•	4.11.2 Linear programming	
		4.11.3 DEA "cost" and production functions	109
5	Add	itional Topics in DEA	115
	5.1	Introduction	
	5.2	Super-efficiency	115
	5.3	Non-discretionary variables	118
	5.4	Directional efficiency measures	121

xii Contents

7	Stoc	hastic Frontier Analysis SFA	197
	7.1	Introduction	
	7.2	Parametric approaches	
	7.3	Ordinary regression models	
	7.4	Deterministic frontier models	
	7.5	Stochastic frontier models	
	,	7.5.1 Normal and half–normal distributions	
	7.6	Maximum likelihood estimation	
	,,,	7.6.1 Justification for the method	
		7.6.2 Numerical methods	
	7.7	The likelihood function	
	7.8	Actual estimation	
	7.9	Efficiency variance	
		7.9.1 Comparing OLS and SFA	
	7.10	Firm-specific efficiency	
		7.10.1 Firm-specific efficiency in the additive model	
	7.11	Comparing DEA, SFA, and COLS efficiencies	
	7.12	Summary	227
		Bibliographic notes	
		Appendix: Derivation of the log likelihood function	
•			
8	Add	itional Topics in SFA	
	8.1	Introduction	
	8.2	Stochastic distance function models	
		8.2.1 Estimating an output distance function	
	8.3	Functional forms	
		8.3.1 Approximation of functions	
		8.3.2 Homogeneous functions	
		8.3.3 The translog distance function	
	8.4	Stochastic cost function	
	8.5	Statistical inference	
		8.5.1 Variance of parameters	
		8.5.2 Hypothesis testing using the <i>t</i> -test	
		8.5.3 General likelihood ratio tests	
		8.5.4 Is the variation in efficiency significant?	
	8.6	Test for constant returns to scale	
		8.6.1 Rewrite the model: <i>t</i> -test	
		8.6.2 Linear hypothesis	
		8.6.3 Likelihood ratio test	
	8.7		
	8.8	Biased estimates	
	8.9	Summary	
	8.10	Bibliographic notes	262

Contents xiii

y	Mer	ger Analysis	
	9.1	Introduction	. 263
	9.2	Horizontal mergers	
		9.2.1 Integration gains	. 265
		9.2.2 Disintegration gains	. 268
	9.3	Learning, harmony and size effects	. 269
		9.3.1 Organizational restructuring	. 272
		9.3.2 Rationale of the harmony measure	
		9.3.3 Decomposition with a cost function	
	9.4	Implementations in DEA and SFA	. 275
		9.4.1 Numerical example in R	. 277
		9.4.2 Mergers in a parametric model	. 280
		9.4.3 Technical complication	. 281
		9.4.4 Methodological complication	
	9.5	Practical application: Merger control in Dutch hospital industry	. 282
	9.6	Practical application: Mergers of Norwegian DSOs	. 291
	9.7	Controllability, transferability, and ex post efficiency	. 291
	9.8	Summary	. 295
	9.9	Bibliographic notes	. 296
10	Regu	ulation and Contracting	. 299
		Introduction	
	10.2	Classical regulatory packages	
		10.2.1 Cost-recovery regimes	
		10.2.2 Fixed price regimes (price-cap, revenue cap, CPI-X)	. 301
		10.2.3 Yardstick regimes	
		10.2.4 Franchise auctions	
		10.2.5 Applications	
	10.3	Practical application: DSO regulation in Germany	
		10.3.1 Towards a modern benchmark based regulation	
		10.3.2 Revenue cap formula	
		10.3.3 Benchmarking requirements	. 308
		10.3.4 Model development process	
		10.3.5 Model choice	. 311
		10.3.6 Final model	. 313
	10.4	DEA based incentive schemes	
		10.4.1 Interests and decisions	. 315
		10.4.2 Super-efficiency in incentive schemes	. 316
		10.4.3 Incentives with individual noise	
		10.4.4 Incentives with adverse selection	
		10.4.5 Dynamic incentives	
		10.4.6 Bidding incentives	
		10.4.7 Practical application: DSO regulation in Norway	
		Summary	
	10.6	Bibliographic notes	. 323

XIV	Contents

A	Gett	ing Started with R: A Quick Introduction
	A.1	Introduction
	A.2	Getting and installing R
	A.3	An introductory R session
		A.3.1 Packages
		A.3.2 Scripts
		A.3.3 Files in R
	A.4	Changing the appearance of graphs
	A.5	Reading data into R
		A.5.1 Reading data from Excel
	A.6	Benchmarking methods
	A.7	A first R script for benchmarking
	A.8	Other packages for benchmarking in R
	A.9	Bibliographic notes
Ref	erenc	res
Ind	ex	347