

INTERNATIONAL ENERGY AGENCY

951 227 785

ENERGY TECHNOLOGY TRANSITIONS FOR INDUSTRY

Strategies for the Next Industrial Revolution

TABLE OF CONTENTS

Industry overview Iron and steel Cement Chemicals and petrochemicals Pulp and paper Aluminium **Cross-cutting options** Impacts on materials demand **Policy implications** Annex A: Regional detail of industry analysis Annex B: Energy and CO, indicators **Annex C: Framework assumptions** Annex D: Definitions, abbreviations, acronyms and units

1

2

3

4

5

6

7

8

9

E

ב

E

Annex E: References

.....

Foreword
Acknowledgements
Table of contents 7
List of figures
List of tables
List of figures

8

1. 191

Chapter 1	Industry Overview	29
	Introduction	30
	Energy and CO ₂ savings potential with best available technologies.	31
	Industry scenarios	32
	Demand projections for industry	33
	Industrial energy use	34
	Electricity use in industry	35
	CO₂ Emissions in industry	36 38
	Regional implications	41
	Investment costs in industry	43
	RDD&D needs	45
	Policy implications	46

Chapter 2	Iron and Steel	49
	Introduction	50
	Trends in energy efficiency and CO ₂ emissions	51
	Best available technology and technical savings potential	52
	R&D programmes	56
	Scenario analysis	57
	Cost of CO ₂ reductions in the iron and steel sector	63

New technology options	65
New coal-based processes	65
Smelting reduction processes	65
Coal-based direct reduced iron (DRI)	66
Fuel switching	67
Gas-based DRI	67
Use of charcoal	68
Use of waste plastic	69
Electricity-based steel-making	69
Use of hydrogen	70
CO ₂ capture and storage	70
Material flows and material flow optimisation	72
Materials use and efficiency	73
Conclusion: transition pathway for the iron and steel sec	tor 74

9

1

Chapter	Cement	77
	Introduction	
	Cement production process and technologies	78
	Trends in energy efficiency and CO ₂ emissions	81
	Technology and fuel consumption in cement production	82
	Alternative fuel use in cement production	83
	CO ₂ emissions from cement production	85
	Best available technology and technical savings potential.	86
	R&D programmes	90
	Scenario analysis	90
	Costs of CO ₂ reduction in the cement sector	97
	New technology options	98
	CO_2 capture and storage	99
	Oxyfuel technology as part of CO_2 capture and storage	99
	Post-combustion technologies: absorption	100
	CCS abatement costs in cement kilns	101
	New low-carbon cements	101
	Conclusion: transition pathway for the cement sector	. 103

Chapter	Chemicals and petrochemicals	105
	Introduction	. 106
	Trends in energy efficiency and CO_2 emissions	. 107
	Best available technology and technical savings potential.	. 115
	Process integration and process intensification at site level	117
	Combined heat and power-(CHP)	117
	Recycling and energy recovery	117
	Age of capital stock and transition to BPT	118
	Scenario analysis	. 119
	Costs of CO_2 reduction in the chemical and petrochemical sector	125
	New technology options	. 125
	New olefin production technologies	125
	Other catalytic processes with improvement potential	127
	Membranes and other separation technologies	128
	Future process intensification potentials	129
	Bio-based chemicals and plastics	129
	CO_2 capture and storage in the chemical and petrochemical sector	r 130
	Material flows and material flow optimisation	. 130
	Conclusion: transition pathway for the chemical and petrochemical sector	. 132
Chapter \iint		135 • • • •
	Introduction	. 136
	Pulp and paper processes	. 137
	Recovered paper	138
	Trends in energy efficiency and CO ₂ emissions	. 138
	Energy efficiency index methodology	138
	Data issues	141
	Best available technology and technical savings potentials	. 143
	Age of the capital stock and transition to BAT	145
	Scenario analysis	. 146
	Costs of CO_2 reduction in the pulp and paper sector	151

;

	New technology options	152
	Black liquor gasification	152
	Lignin production from black liquor	153
	Biomass gasification with synfuels production	153
	Biorefinery concepts	/ 153
	CO_2 capture and storage (CCS)	154
	Paper-drying technologies	155
	Material flows and demand analysis	155
	Conclusion: transition pathway for the pulp and paper sect	or. 158
Chapter 🌀	Aluminium	161
	Introduction	162
	Trends in energy efficiency and GHG emissions	163
	Mining	164
	Alumina refining	164
	Anode production	166
	Smelting	166
	Recycled production	169
	Best available technology and technical savings potentia	als . 169
	Scenario analysis	171
	Costs of CO ₂ reductions in the aluminium sector	175
	New technology options	176
	Improvements to the Hall-Héroult cell	176
	Wetted drained cathodes	177
```	Inert anodes	177
	Alternative technologies	177
	Carbothermic reduction	177
	Kaolinite reduction	178
	Carbon capture and storage	178
	Aluminium markets	178
	Conclusion: transition pathway for the aluminium sector	r 179
Chapter 🔊	Cross-cutting options	183
	Introduction	184

	Biomass and biomass-waste use	185
	Systems optimisation	191
	Electric motor-driven systems	191
	Steam systems	193
	Combined heat and power (CHP)	195
	CHP technologies	Í96
	CHP applications	196
	CHP barriers and policy solutions	197
	Carbon capture and storage (CCS)	198
	Recycling	204
,	Use of recycled aluminium	204
	Use of scrap iron and steel	206
	Use of recovered paper	207
	Use of recycled plastic	207
	Municipal solid waste and by-products	208
	Reducing other GHG emissions	209
Chapter 🛽	Impacts on materials demand	211
	Introduction	212
	Power sector	213
	Materials needs for PV technologies	217
	Transport sector	219
	Base year (2005) estimates	220
	Future scenarios	222
	Vehicle sales and total materials use by scenario	224
	Building sector	229
Chapter 🔊	Policy implications	235
	Introduction	
	Energy efficiency policies	
	<b>Research, development and demonstration</b> Priority near-term RD&D targets for the development	240
	of lower-carbon technologies	241
	Public-private partnerships	242

ς.

ć

Emissions trading	244
The impacts of ETSs on competitiveness and carbon leakage	247
Options to reducing carbon leakage	249
Sectoral approaches	250
Implementing sectoral approaches	253
Coverage and data availability	254
Domestic implementation issues	255
Carbon leakage	255
Challenges on the demand side	255
Sectoral approaches: the logical next step for international action?	257
Conclusions	257

Annex	A	Regional detail of industry analysis	259
Annex	B	Energy and CO ₂ indicators	271
Annex	C	Framework assumptions	283
Annex	D	Definitions, abbreviations, acronyms and units	289
Annex	E	References	305

## ) LIST OF FIGURES

## Executive Summary and Chapter **Industry Overview**

× .

pter 🛄		
ES. 1	Technologies for reducing direct CO ₂ emissions from industry, 2006 to 2050	25
1.1	Direct $CO_2$ emissions in industry by sector and by region, 2006	30
1.2	Materials production under the low-demand case, 2006, 2030 and 2050	33
1.3	Final energy use in industry	34
1.4	Electricity use by sector, as a share of final energy use under the Baseline and BLUE scenarios, 2006 and 2050	35
1.5	Total industry emissions in Baseline and BLUE scenarios, 2006 and 2050	36
1.6	Total industrial energy use and $CO_2$ emissions in the BLUE low 2050 scenario	37
1.7	Contribution to total direct and indirect emissions reduction under the BLUE scenarios compared to Baseline scenarios	37
1.8	$CO_2$ intensity of electricity production by scenario	38

------