Monte Carlo Methods and Models in Finance and Insurance

Ralf Korn Elke Korn Gerald Kroisandt

Contents

Li	st of	Algor	ithms	x			
1	Introduction and User Guide						
	1.1	Introd	luction and concept				
	1.2	Conte					
	1.3	How t	to use this book	;			
	1.4	Furthe	er literature				
	1.5	Ackno	owledgments	4			
2	Generating Random Numbers						
	2.1	Introd	luction	ļ			
		2.1.1	How do we get random numbers?	ļ			
		2.1.2	Quality criteria for RNGs	1			
		2.1.3	Technical terms				
	2.2	Exam	ples of random number generators				
		2.2.1	Linear congruential generators				
		2.2.2	Multiple recursive generators	1			
		2.2.3	Combined generators	1			
		2.2.4	Lagged Fibonacci generators	1			
		2.2.5	\mathbb{F}_2 -linear generators	1			
		2.2.6	Nonlinear RNGs	2			
		2.2.7	More random number generators	2			
		2.2.8	Improving RNGs	2			
	2.3	Testin	ng and analyzing RNGs	2			
		2.3.1	Analyzing the lattice structure	2			
		2.3.2	Equidistribution	2			
		2.3.3	Diffusion capacity	2			
		2.3.4	Statistical tests	2			
	2.4	Gener	rating random numbers with general distributions	3			
		2.4.1	Inversion method	3			
		2.4.2	Acceptance-rejection method	3			
	2.5		distributions	3			
	· -	2.5.1	Generating normally distributed random numbers	3			
		2.5.2	Generating beta-distributed RNs	3			
		2.5.3	Generating Weibull-distributed RNs	3			
		2.5.4	Generating gamma-distributed RNs	3			
		2.5.5	Generating chi-square-distributed RNs	4			
		4.0.0	Concraming our-square-distributed 1949	-			

2.6 Multivariate random variables			variate random variables	43
		2.6.1	Multivariate normals	43
		2.6.2	Remark: Copulas	44
		2.6.3	Sampling from conditional distributions	44
	2.7	Quasir	random sequences as a substitute for random sequences	45
		2.7.1	Halton sequences	47
		2.7.2	Sobol sequences	48
		2.7.3	Randomized quasi-Monte Carlo methods	49
		2.7.4	Hybrid Monte Carlo methods	50
		2.7.5	Quasirandom sequences and transformations into	
			other random distributions	50
	2.8	Paralle	elization techniques	51
		2.8.1	Leap-frog method	51
		2.8.2	Sequence splitting	52
		2.8.3	Several RNGs	53
		2.8.4	Independent sequences	53
	`	2.8.5	Testing parallel RNGs	53
			3.	
3			e Carlo Method: Basic Principles	55
	3.1		uction	55
	3.2		crong law of large numbers and the Monte Carlo method	56
		3.2.1	The strong law of large numbers	56
		3.2.2	The crude Monte Carlo method	57
		3.2.3	The Monte Carlo method: Some first applications	60
	3.3		ving the speed of convergence of the Monte Carlo method:	
			nce reduction methods	65
		3.3.1	Antithetic variates	66
		3.3.2	Control variates	70
		3.3.3	Stratified sampling	76
		3.3.4	Variance reduction by conditional sampling	85
		3.3.5	Importance sampling	87
	3.4		er aspects of variance reduction methods	97
		3.4.1	More methods	97
		3.4.2	Application of the variance reduction methods	100
4	Cor	+:	is-Time Stochastic Processes: Continuous Paths	103
4	4.1		luction	103
	$\frac{4.1}{4.2}$		astic processes and their paths: Basic definitions	103
	4.2		In Carlo method for stochastic processes	107
	4.0	4.3.1	Monte Carlo and stochastic processes	107
		4.3.1 $4.3.2$	Simulating paths of stochastic processes: Basics	107
			9 -	110
	1 1	4.3.3	Variance reduction for stochastic processes	
	4.4	4.4.1	nian motion and the Brownian bridge	111
			Properties of Brownian motion	113
		4.4.2	Weak convergence and Donsker's theorem	116

		4.4.3 Brownian bridge	120		
	4.5	Basics of Itô calculus	126		
		4.5.1 The Itô integral			
		4.5.2 The Itô formula			
		4.5.3 Martingale representation and change of measure.			
	4.6	Stochastic differential equations	137		
		4.6.1 Basic results on stochastic differential equations	137		
		4.6.2 Linear stochastic differential equations	139		
		4.6.3 The square-root stochastic differential equation			
		4.6.4 The Feynman-Kac representation theorem	142		
	4.7	Simulating solutions of stochastic differential equations .	145		
		4.7.1 Introduction and basic aspects	145		
		4.7.2 Numerical schemes for ordinary differential equation	ns 146		
		4.7.3 Numerical schemes for stochastic differential equation	ons 151		
		4.7.4 Convergence of numerical schemes for SDEs	156		
		4.7.5 More numerical schemes for SDEs	159		
		4.7.6 Efficiency of numerical schemes for SDEs	162		
		4.7.7 Weak extrapolation methods	163		
		4.7.8 The multilevel Monte Carlo method			
	4.8	Which simulation methods for SDE should be chosen? .	173		
5	Sim	ulating Financial Models: Continuous Paths	175		
Ü	5.1	Introduction			
	5.2	Basics of stock price modelling			
	5.3	A Black-Scholes type stock price framework			
	0.0	5.3.1 An important special case: The Black-Scholes mode			
		5.3.2 Completeness of the market model			
	5.4	Basic facts of options			
	5.5	An introduction to option pricing			
		5.5.1 A short history of option pricing			
		5.5.2 Option pricing via the replication principle			
		5.5.3 Dividends in the Black-Scholes setting			
	5.6	Option pricing and the Monte Carlo method in the Bla			
		Scholes setting			
		5.6.1 Path-independent European options			
		5.6.2 Path-dependent European options			
		5.6.3 More exotic options			
		5.6.4 Data preprocessing by moment matching methods	211		
	5.7	Weaknesses of the Black-Scholes model			
	5.8	Local volatility models and the CEV model	216		
		5.8.1 CEV option pricing with Monte Carlo methods			
	5.9	An excursion: Calibrating a model			
	5.10	Aspects of option pricing in incomplete markets			
		Stochastic volatility and option pricing in the Heston mod-			
	5.11	Stochastic volatility and option pricing in the rieston mod-	CI 224		

		5.11.2	The Heath-Platen estimator in the Heston model	232
	5.12	Varian	ce reduction principles in non-Black-Scholes models .	238
	5.13	Stocha	stic local volatility models	239
			Carlo option pricing: American and Bermudan options	240
			The Longstaff-Schwartz algorithm and regression-based	
			variants for pricing Bermudan options	243
		5.14.2	Upper price bounds by dual methods	250
	5.15		Carlo calculation of option price sensitivities	257
			The role of the price sensitivities	257
			Finite difference simulation	258
			The pathwise differentiation method	261
			The likelihood ratio method	264
			Combining the pathwise differentiation and the	201
		0.10.0	likelihood ratio methods by localization	265
		5.15.6	Numerical testing in the Black-Scholes setting	267
	5 16		of interest rate modelling	269
	0.10		Different notions of interest rates	270
			Some popular interest rate products	$\frac{270}{271}$
	5 17		nort rate approach to interest rate modelling	275
	0.11		Change of numeraire and option pricing: The forward	210
		0.11.1	measure	276
		5.17.2	The Vasicek model	$\frac{270}{278}$
			The Cox-Ingersoll-Ross (CIR) model	281
			Affine linear short rate models	283
			Perfect calibration: Deterministic shifts and the Hull-	200
		0.11.0		283
		5 17 6	White approach	$\frac{283}{287}$
	5 10		rward rate approach to interest rate modelling	288
	0.10		The continuous-time Ho-Lee model	289
			The Cheyette model	290
	£ 10		•	293
	5.19		R market models	$\frac{293}{294}$
			Relation between the swaptions and the cap market .	$\frac{294}{297}$
			-	291
		5.19.3	1	200
		£ 10 /	LIBOR rates and derivative pricing	299
		5.19.4	Monte Carlo pricing of Bermudan swaptions with a	205
		E 10 E	parametric exercise boundary and further comments.	305
		5.19.5	Alternatives to log-normal forward-LIBOR models	308
6	Con	tinuou	s-Time Stochastic Processes: Discontinuous Paths	309
•	6.1	Introd		309
	6.2		n processes and Poisson random measures: Definition	500
	0.2		mulation	310
		6.2.1	Stochastic integrals with respect to Poisson processes	312
	6.3		diffusions: Basics, properties, and simulation	315
	0.0	o ump-	amasions. Dasies, properties, and simulation	919

		6.3.1	Simulating Gauss-Poisson jump-diffusions	317
		6.3.2	Euler-Maruyama scheme for jump-diffusions	319
	6.4	Lévy j	processes: Properties and examples	320
		6.4.1	Definition and properties of Lévy processes	320
		6.4.2	Examples of Lévy processes	324
	6.5	Simula	ation of Lévy processes	329
		6.5.1	Exact simulation and time discretization	329
		6.5.2	The Euler-Maruyama scheme for Lévy processes	330
		6.5.3	Small jump approximation	331
		6.5.4	Simulation via series representation	333
7	Sim	ulatin	g Financial Models: Discontinuous Paths	335
	7.1	Introd	luction	335
	7.2	Merto	n's jump-diffusion model and stochastic volatility models	
		with j	umps	335
		7.2.1	Merton's jump-diffusion setting	335
		7.2.2	Jump-diffusion with double exponential jumps	339
		7.2.3	Stochastic volatility models with jumps	340
	7.3	Specia	al Lévy models and their simulation	340
		7.3.1	The Esscher transform	341
		7.3.2	The hyperbolic Lévy model	342
		7.3.3	The variance gamma model	344
		7.3.4	Normal inverse Gaussian processes	352
		7.3.5	Further aspects of Lévy type models	354
8	Sim	ulatin	g Actuarial Models	357
	8.1	Introd	luction	357
	8.2	Premi	um principles and risk measures	357
		8.2.1	Properties and examples of premium principles	358
		8.2.2	Monte Carlo simulation of premium principles	362
		8.2.3	Properties and examples of risk measures	362
		8.2.4	Connection between premium principles and risk	905
		0.05	measures	365
	0.0	8.2.5	Monte Carlo simulation of risk measures	366
	8.3		applications of Monte Carlo methods in life insurance.	377
		8.3.1	Mortality: Definitions and classical models	378
		8.3.2	Dynamic mortality models	379
		8.3.3	Life insurance contracts and premium calculation	383
		8.3.4	Pricing longevity products by Monte Carlo simulation	385
	0.4	8.3.5	Premium reserves and Thiele's differential equation	387
	8.4		ating dependent risks with copulas	390
		8.4.1	Definition and basic properties	390
		8.4.2	Examples and simulation of copulas	393
		8.4.3	Application in actuarial models	402
	8.5	Nonlif	e insurance	403

	8.5.1	The individual model	404
	8.5.2	The collective model	405
	8.5.3	Rare event simulation and heavy-tailed distributions .	410
	8.5.4	Dependent claims: An example with copulas	413
8.6	Marko	ov chain Monte Carlo and Bayesian estimation	415
	8.6.1	Basic properties of Markov chains	415
	8.6.2	Simulation of Markov chains	419
	8.6.3	Markov chain Monte Carlo methods	420
	8.6.4	MCMC methods and Bayesian estimation	427
	8.6.5	Examples of MCMC methods and Bayesian estimation	
		in actuarial mathematics	429
8.7	Asset-	liability management and Solvency II	433
	8.7.1	Solvency II	433
	8.7.2	Asset-liability management (ALM)	435
Refere	nces		441
Index		•	459