International Series in Operations Research & Management Science

Volume 156

Series Editor Frederick S. Hillier, Stanford University, CA, USA

Special Editorial Consultant Camille C. Price Stephen F. Austin State University, TX, USA

For further volumes: http://www.springer.com/series/6161

Contents

0

Pre	face .	• • • • • •		vii		
Not	ation	s		xvii		
1	Basics					
	1.1	Introduction				
		Exercises				
	1.2	Linear Programming Prerequisites				
		1.2.1	Algebraic concepts and properties	7		
		1.2.2	Geometric interpretation	10		
		1.2.3	Duality statements	12		
		1.2.4	The Simplex method	16		
		1.2.5	The dual Simplex method	20		
		ises	22			
		1.2.6	Dual decomposition method	23		
		1.2.7	Nested decomposition	31		
		1.2.8	Regularized decomposition	46		
		1.2.9	Interior Point Methods	48		
		Exercises 53				
	1.3	Nonlinear Programming Prerequisites 54				
		1.3.1	Optimality Conditions	57		
		1.3.2	Solution methods	59		
			Cutting Planes: Outer Linearization (Kelley)	61		
			Cutting Planes: Outer Linearization (Veinott)	63		
			Cutting Planes: Outer Linearization (Zoutendijk)	65		
			A Central Cutting Plane Method (Elzinga-Moore)	66		
		Exerci	ises	69		
2	Sing	gle-stag	e SLP models	71		
	2.1	-	uction	71		
		Exerci	ises	87		

	2.2	Models involving probability functions				
		2.2.1	Basic properties			
		2.2.2	Finite discrete distribution	93		
		2.2.3	Separate probability functions			
			Only the right-hand-side is stochastic			
			Multivariate normal distribution	98		
			Stable distributions	106		
			A distribution-free approach			
		2.2.4	The independent case	113		
		2.2.5	Joint constraints: random right-hand-side	115		
			Generalized-concave probability measures			
			Generalized-concave distribution functions			
			Maximizing joint probability functions			
		2.2.6	Joint constraints: random technology matrix			
		2.2.7	Summary on the convex programming subclasses			
			ses			
	2.3		le functions, Value at Risk			
	2.4	Model	s based on expectation			
		2.4.1	Integrated chance constraints			
			Separate integrated probability functions			
			Joint integrated probability functions			
		2.4.2	A model involving conditional expectation			
		2.4.3	Conditional Value at Risk	152		
			ses			
	2.5	Model	s built with deviation measures			
		2.5.1	Quadratic deviation			
		2.5.2	Absolute deviation			
		2.5.3	Quadratic semi-deviation			
		2.5.4	Absolute semi-deviation			
			ses			
	2.6		ing risk and opportunity			
	2.7		neasures			
		2.7.1	Risk measures in finance			
		2.7.2	Properties of risk measures			
		2.7.3	Portfolio optimization models			
		2.7.4	Optimizing performance			
		Exerci	ses	188		
3	SI P	model	s with recourse	101		
0	3.1					
	3.2		vo-stage SLP: Properties and solution appraoches			
		3.2.1	The complete fixed recourse problem (CFR)			
			3.2.1.1 CFR: Direct bounds for the expected recourse $\mathcal{Q}(x)$			
			3.2.1.2 CFR: Moment problems and bounds for $\mathcal{Q}(x)$			
			3.2.1.3 CFR: Approximation by successive discretization .			
			size of the approximation by successive discretization .	210		

ł

				DAPPROX: Approximating CFR solutions	223
		Exercis	ses		224
		3.2.2		ble recourse case	
			3.2.2.1	The standard simple recourse problem (SSR)	
			3.2.2.2	SSR: Approximation by successive discretization .	
				SRAPPROX: Approximating SSR solutions	
			3.2.2.3	The multiple simple recourse problem	
			3.2.2.4	The generalized simple recourse problem (GSR).	
				GSR-CUT: Solving GSR by successive cuts	
		Exercis	ses		249
		3.2.3		d recourse problems	
		3.2.4		aracteristic values for two-stage SLP's	
	3.3	The m		SLP	
		3.3.1		vith finite discrete distributions	
		3.3.2	MSLP w	vith non-discrete distributions	266
		• • •			0 05
4	0				
	4.1				
	4.2	4.2.1		bdels with separate probability functions	
	4.3			to available software	
	4.5	4.3.1		al considerations	
		4.3.1			
		4.3.2		plane methods	
		4.3.3		for the probability distribution function	
		4.3.4		ng probability distribution functions	
		4.0.0	-	e-Carlo approach with antithetic variates	
				e-Carlo approach based on probability bounds	
		4.3.6		screte distributions	
				to available software	
		4.5.7		blems with logconcave distribution functions	
				ng probability distribution functions	
				blems with finite discrete distributions	
		Exercis	-		
	4.4			odels based on expectation	
		4.4.1		equivalent LP's	
		4.4.2		composition revisited	
		4.4.3		with separate integrated probability functions	
		4.4.4		involving CVaR	
		4.4.5		with joint integrated probability functions	
		4.4.6		to available software	
				with separate integrated probability functions	
				with joint integrated probability functions	
				involving CVaR	
				-	

	Exerci	ses	325
4.5		-stage models involving VaR	
4.6		-stage models with deviation measures	
	4.6.1	A guide to available software	
4.7	Two-s	tage recourse models	327
	4.7.1	Decomposition methods	
	4.7.2	Successive discrete approximation methods	329
		Computing the Jensen lower bound	330
		Computing the E-M upper bound for an interval	
		Computing the bounds for a partition	
		The successive discrete approximation method	
,		Implementation	
		Simple recourse	
		Other successive discrete approximation algorithms	
1	4.7.3	Stochastic algorithms	
		Sample average approximation (SAA)	
		Stochastic decomposition	
		Other stochastic algorithms	
	4.7.4	Simple recourse models	361
	4.7.5	A guide to available software	
	Exerci	ses	363
4.8		tage recourse models	
	4.8.1	Finite discrete distribution	364
	4.8.2	Scenario generation	366
		Bundle-based sampling	
		A moment-matching heuristics	
	4.8.3	A guide to available software	
4.9	Model	ing systems for SLP	
	4.9.1	Modeling systems for SLP	
	4.9.2	SLP-IOR	
		General issues	378
		Analyze tools and workbench facilities	379
1		Transformations	380
		Scenario generation	380
		The solver interface	380
		System requirements and availability	
		• •	
Reference	es		383
Exercise	s: Hints	for answers	405
Index			421

L