ARCH Models for Financial Applications

Evdokia Xekalaki • Stavros Degiannakis

Department of Statistics Athens University of Economics and Business, Greece

Contents

Preface	×	X	
Notation	Notation		
1 What is an ARCH proces	s?	1	
1.1 Introduction		1	
1.2 The autoregressive con	nditionally heteroscedastic process	8	
1.3 The leverage effect		13	
1.4 The non-trading period	d effect	15	
1.5 The non-synchronous	trading effect	15	
1.6 The relationship between	en conditional variance and		
conditional mean		16	
1.6.1 The ARCH in n	nean model	16	
1.6.2 Volatility and se	rial correlation	18	
2 ARCH volatility specifica	tions	19	
2.1 Model specifications		19	
2.2 Methods of estimation		23	
2.2.1 Maximum likeli	hood estimation	23	
2.2.2 Numerical estim	ation algorithms	25	
2.2.3 Quasi-maximum	likelihood estimation	28	
2.2.4 Other estimation	methods	29	
2.3 Estimating the GARC	H model with EViews 6:		
an empirical example	•	31	
2.4 Asymmetric condition	al volatility specifications	42	
2.5 Simulating ARCH mo	dels using EViews	49	
2.6 Estimating asymmetric	ARCH models with G@RCH 4.2		
OxMetrics: an empirio	al example	55	
2.7 Misspecification tests		66	
2.7.1 The Box-Pierce	and Ljung-Box Q statistics	66	
2.7.2 Tse's residual b	ased diagnostic test for		
conditional hete	roscedasticity	67	
2.7.3 Engle's Lagrang	ge multiplier test	67	
2.7.4 Engle and Ng's	sign bias tests	68	
2.7.5 The Breusch–Pa	gan, Godfrey, Glejser, Harvey and White tests	69	

	~ ^ > ITTE> ITT
V111	CONTENTS

		2.7.6 The Wald, likelihood ratio and Lagrange multiplier tests	69
	2.8	Other ARCH volatility specifications	70
		2.8.1 Regime-switching ARCH models	70
		2.8.2 Extended ARCH models	72
	2.9	Other methods of volatility modelling	76
2	2.10	Interpretation of the ARCH process	82
		Appendix	86
3	Fra	ctionally integrated ARCH models	107
		Fractionally integrated ARCH model specifications	107
		Estimating fractionally integrated ARCH models using	
		G@RCH 4.2 OxMetrics: an empirical example	111
	3.3	A more detailed investigation of the normality of the	
		standardized residuals: goodness-of-fit tests	122
		3.3.1 EDF tests	123
		3.3.2 Chi-square tests	124
		3.3.3 QQ plots	125
		3.3.4 Goodness-of-fit tests using EViews and G@RCH	126
		Appendix	129
4	Vol	atility forecasting: an empirical example using EViews 6	143
		One-step-ahead volatility forecasting	143
		Ten-step-ahead volatility forecasting	150
		Appendix	154
5	Oth	ner distributional assumptions	163
		Non-normally distributed standardized innovations	163
		Estimating ARCH models with non-normally distributed	
		standardized innovations using G@RCH 4.2 OxMetrics:	
		an empirical example	168
	5.3	Estimating ARCH models with non-normally distributed	
		standardized innovations using EViews 6: an empirical example	174
	5.4	Estimating ARCH models with non-normally distributed	
		standardized innovations using EViews 6: the logl object	176
		Appendix	182
6	Vol	atility forecasting: an empirical example using G@RCH Ox	185
		Appendix	195
7	Inti	raday realized volatility models	217
		Realized volatility	217
		Intraday volatility models	220
	7.3	Intraday realized volatility and ARFIMAX models	
		in G@RCH 4.2 OxMetrics: an empirical example	223
		7.3.1 Descriptive statistics	223

		CONTENTS	1X
		7.3.2 In-sample analysis	228
		7.3.3 Out-of-sample analysis	232
0			220
8		plications in value-at-risk, expected shortfall and options pricing	239
	8.1	8	239
		8.1.1 Value-at-risk	239
		8.1.2 Parametric value-at-risk modelling	240
		8.1.3 Intraday data and value-at-risk modelling	242
		8.1.4 Non-parametric and semi-parametric value-at-risk modelling	244 245
		8.1.5 Back-testing value-at-risk8.1.6 Value-at-risk loss functions	243
	0.0	* = ⁻	248
	0.2	One-day-ahead expected shortfall forecasting 8.2.1 Historical simulation and filtered historical simulation	2 4 0
			251
		for expected shortfall	251
	02	8.2.2 Loss functions for expected shortfall	231
	0.3	FTSE100 index: one-step-ahead value-at-risk and expected shortfall forecasting	252
	0 1		258
		Multi-period value-at-risk and expected shortfall forecasting ARCH volatility forecasts in Black–Scholes option pricing	260
	0.5	8.5.1 Options	261
		8.5.2 Assessing the performance of volatility forecasting methods	269
		8.5.3 Black–Scholes option pricing using a set of ARCH processes	270
		8.5.4 Trading straddles based on a set of ARCH processes	271
		8.5.5 Discussion	279
	86	ARCH option pricing formulas	281
	0.0	8.6.1 Computation of Duan's ARCH option prices: an example	286
		Appendix	288
		Appendix	200
9	Imj	plied volatility indices and ARCH models	341
		Implied volatility	341
		The VIX index	342
		The implied volatility index as an explanatory variable	344
	9.4	ARFIMAX model for implied volatility index	349
		Appendix	352
		1	
1		RCH model evaluation and selection	357
	10	1.1 Evaluation of ARCH models	358
		10.1.1 Model evaluation viewed in terms of information criteria	359
		10.1.2 Model evaluation viewed in terms of statistical	
		loss functions	360
		10.1.3 Consistent ranking	367
		10.1.4 Simulation, estimation and evaluation	377
		10.1.5 Point, interval and density forecasts	383
		10.1.6 Model evaluation viewed in terms of loss functions based	
		on the use of volatility forecasts	384

	$\alpha \alpha$	TOPENTO	
X	CON	ITENTS	

Subject	Index	533
Author	Index	521
References		479
	Appendix	475
11.5	Evaluation of multivariate ARCH models	473
	Estimating multivariate ARCH models using G@RCH 5.0	465
	Estimating multivariate ARCH models using EViews 6	456
	Maximum likelihood estimation	454
	11.1.2 Asymmetric and long-memory model specifications	453
	11.1.1 Symmetric model specifications	446
11.1	Model Specifications	446
11 Mul	tivariate ARCH models	445
	Appendix	410
10.4	The SPA test for VaR and expected shortfall	408
40 :	of model selection	407
	10.3.3 Median values of loss functions as methods	
	10.3.2 Applying loss functions as methods of model selection	402
	10.3.1 Applying the SPEC model selection method	401
10.3	Application of loss functions as methods of model selection	401
	10.2.7 Forecast encompassing tests	400
	10.2.6 The standardized prediction error criterion	393
	10.2.5 Hansen's superior predictive ability test	390
	10.2.4 White's reality check for data snooping	390
	10.2.3 The Morgan–Granger–Newbold test	389
	10.2.2 The Harvey–Leybourne–Newbold test	389
	10.2.1 The Diebold-Mariano test	386
10.2	Selection of ARCH models	386