

© 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to <u>dandelon.com</u> network.

Bayesian Statistics:

An Introduction

PETER M. LEE

Provost of Wentworth College, University of York, England

Second Edition

A member of the Hodder Headline Group LONDON • SYDNEY • AUCKLAND Copublished in North, Central and South America by John Wiley & Sons Inc., New York • Toronto

Contents

Preface Preface to the First Edition			viii ix
	1.1	Probability and Bayes' theorem	1
	1.2	Examples on Bayes' theorem	8
	1.3	Random variables	11
	1.4	Several random variables	16
	1.5	Means and variances.	20
	1.6	Exercises	27
2	Baye	sian Inference for the Normal Distribution	33
	2.1	Nature of Bayesian inference	33
	2.2	Normal prior and likelihood	36
	2.3	Several normal observations with a normal prior	40
	2.4	Dominant likelihoods	43
	2.5	Locally uniform priors	45
	2.6	Highest density regions (HDRs)	49
	2.7	Normal variance	50
	2.8	HDRs for the normal variance	53
	2.9	The role of sufficiency	55
	2.10	Conjugate prior distributions	59
	2.11	The exponential family	63
	2.12	Normal mean and variance both unknown	65
	2.13	Conjugate joint prior for the normal distribution	69
	2.14	Exercises	73
3	Some Other Common Distributions		
	3.1	The binomial distribution	77
	3.2	Reference prior for the binomial likelihood	83
	3.3	Jeffrevs' rule	86
	3.4	The Poisson distribution	90

	3.5	The uniform distribution	93	
	3.6	Reference prior for the uniform distribution	97	
	3.7	The tramcar problem	99	
	3.8	The first digit problem: invariant priors	100	
	3.9	The circular normal distribution	103	
	3.10	Approximations based on the likelihood	107	
	3.11	Exercises	112	
4	Hypothesis Testing			
-	4.1	Hypothesis testing.	117	
	4.2	One-sided hypothesis tests	121	
	4.3	Lindley's method.	123	
	4.4	Point (or sharp) null hypotheses with prior information	124	
	4.5	Point null hypotheses for the normal distribution.	127	
	4.6	The Doogian philosophy	133	
	4.7	Exercises	134	
5	Two	-sample Problems	139	
5	51	Two-sample problems – both variances unknown	139	
	5.2	Variances unknown but equal	142	
	53	Variances unknown and unequal (Behrens-Fisher problem)	145	
	54	The Behrens-Fisher controversy	147	
	5.5	Inferences concerning a variance ratio	149	
	5.6	Comparison of two proportions: the 2×2 table	152	
	5.7	Exercises	154	
6	Correlation Degression and the Analysis of Variance 150			
Ů	61	Theory of the correlation coefficient	159	
	6.2	Examples on the use of the correlation coefficient	165	
	63	Regression and the bivariate normal model	166	
	64	Conjugate prior for the bivariate regression model	172	
	6 5	Comparison of several means – the one way model	174	
	6.6	The two way layout	182	
	67	The general linear model	185	
	6.8	Exercises	189	
7	Oth a	Topics	102	
1	7 1	The likelihood principle	102	
	7.1	The stepping rule principle	195	
	1.2		197	
	1.3 7 1	The likelihood principle and reference priors	200	
	7.4	Paulation designs theory	203	
	1.5	Dayeslan decision theory	204	
	7.0 7.7	Dayes linear methods	210	
	1.1	Decision theory and hypothesis testing	212	
	/.ð	Empirical Bayes methods	214	
	7.9	Exercises	217	

vi CONTENTS

8	Hier	achical Models	223
	8.1	The idea of a hierachical model	223
	8.2	The hierachical normal model	227
	8.3	The baseball example	231
	8.4	The Stein estimator	232
	8.5	Bayesian analysis for an unknown overall mean	236
	8.6	The general linear model revisited	240
	8.7	Exercises	244

Anc	Gibbs Sampler and Other Municipal Methods
9.1	Introduction to numerical methods
9.2	The EM algorithm
9.3	Data augmentation by Monte Carlo
9.4	The Gibbs sampler
9.5	Other algorithms
9.6	Exercises

,

Appendix	A Common Statistical Distributions	275
A.1	Normal distribution	276
A.2	Chi-squared distribution	276
A.3	Normal approximation to chi-squared	277
A.4	Gamma distribution	277
A.5	Inverse chi-squared distribution	278
A.6	Inverse chi distribution	279
A.7	Log chi-squared distribution	279
A.8	Student's t distribution	280
A.9	Normal/chi-squared distribution	281
A.10	Beta distribution	282
A.11	Binomial distribution	283
A.12	Poisson distribution	283
A.13	Negative binomial distribution	284
A.14	Hypergeometric distribution	285
A.15	Uniform distribution	286
A.16	Pareto distribution	286
A.17	Circular normal distribution	288
A.18	Behrens' distribution	289
A.19	Snedecor's F distribution	290
A.20	Fisher's z distribution	291
A.21	Cauchy distribution.	292
A.22	The probability that one beta variable is greater than	
	another	292
A.23	Bivariate normal distribution	293
A.24	Multivariate normal distribution	293
A.25	Distribution of the correlation coefficient	294
A.25	Distribution of the correlation coefficient	294

Appendix B Tables		29 7
B .1	Percentage points of the Behrens-Fisher distribution	298
B.2	HDRs for the chi-squared distribution	300
B.3	HDRs for the inverse chi-squared distribution	302
B.4	Chi-squared corresponding to HDRs for $\log \chi^2$	304
B .5	Values of F corresponding to HDRs for log F	306
Appendix C Further Reading		327
References		329
Index		339

Note: The tables in the Appendix are intended for use in conjunction with a standard set of statistical tables, for example, Lindley and Scott (1995) or Neave (1978). They extend the coverage of these tables so that they are roughly comparable with those of Isaacs *et al.* (1974) or with the tables in Appendix A of Novick and Jackson (1974). However, tables of values easily computed with a pocket calculator have been omitted. The tables have been computed using NAG routines and algorithms described in Patil (1965) and Jackson (1974).