Matrix Preconditioning Techniques
and Applications

KE CHEN
Reader in Mathematics
Department of Mathematical Sciences
The University of Liverpool
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Direct and iterative solvers, types of preconditioning</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Norms and condition number</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Perturbation theories for linear systems and eigenvalues</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>The Arnoldi iterations and decomposition</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Clustering characterization, field of values and (\epsilon)-pseudospectrum</td>
<td>16</td>
</tr>
<tr>
<td>1.6</td>
<td>Fast Fourier transforms and fast wavelet transforms</td>
<td>19</td>
</tr>
<tr>
<td>1.7</td>
<td>Numerical solution techniques for practical equations</td>
<td>41</td>
</tr>
<tr>
<td>1.8</td>
<td>Common theories on preconditioned systems</td>
<td>61</td>
</tr>
<tr>
<td>1.9</td>
<td>Guide to software development and the supplied Mfiles</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>Direct methods</td>
<td>66</td>
</tr>
<tr>
<td>2.1</td>
<td>The LU decomposition and variants</td>
<td>68</td>
</tr>
<tr>
<td>2.2</td>
<td>The Newton–Schulz–Hotelling method</td>
<td>75</td>
</tr>
<tr>
<td>2.3</td>
<td>The Gauss–Jordan decomposition and variants</td>
<td>76</td>
</tr>
<tr>
<td>2.4</td>
<td>The QR decomposition</td>
<td>82</td>
</tr>
<tr>
<td>2.5</td>
<td>Special matrices and their direct inversion</td>
<td>85</td>
</tr>
<tr>
<td>2.6</td>
<td>Ordering algorithms for better sparsity</td>
<td>100</td>
</tr>
<tr>
<td>2.7</td>
<td>Discussion of software and the supplied Mfiles</td>
<td>106</td>
</tr>
<tr>
<td>3</td>
<td>Iterative methods</td>
<td>110</td>
</tr>
<tr>
<td>3.1</td>
<td>Solution complexity and expectations</td>
<td>111</td>
</tr>
<tr>
<td>3.2</td>
<td>Introduction to residual correction</td>
<td>112</td>
</tr>
<tr>
<td>3.3</td>
<td>Classical iterative methods</td>
<td>113</td>
</tr>
<tr>
<td>3.4</td>
<td>The conjugate gradient method: the SPD case</td>
<td>119</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>3.5 The conjugate gradient normal method: the unsymmetric case</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>3.6 The generalized minimal residual method: GMRES</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>3.7 The GMRES algorithm in complex arithmetic</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>3.8 Matrix free iterative solvers: the fast multipole methods</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>3.9 Discussion of software and the supplied Mfiles</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>4 Matrix splitting preconditioners [T1]: direct approximation of $A_{n \times n}$</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>4.1 Banded preconditioner</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>4.2 Banded arrow preconditioner</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>4.3 Block arrow preconditioner from DDM ordering</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td>4.4 Triangular preconditioners</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>4.5 ILU preconditioners</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>4.6 Fast circulant preconditioners</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>4.7 Singular operator splitting preconditioners</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>4.8 Preconditioning the fast multipole method</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>4.9 Numerical experiments</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>4.10 Discussion of software and the supplied Mfiles</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>5 Approximate inverse preconditioners [T2]: direct approximation of $A_{n \times n}^{-1}$</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>5.1 How to characterize A^{-1} in terms of A</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>5.2 Banded preconditioner</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>5.3 Polynomial preconditioner $p_k(A)$</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>5.4 General and adaptive sparse approximate inverses</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>5.5 AINV type preconditioner</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>5.6 Multi-stage preconditioners</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>5.7 The dual tolerance self-preconditioning method</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>5.8 Near neighbour splitting for singular integral equations</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>5.9 Numerical experiments</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>5.10 Discussion of software and the supplied Mfiles</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>6 Multilevel methods and preconditioners [T3]: coarse grid approximation</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>6.1 Multigrid method for linear PDEs</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>6.2 Multigrid method for nonlinear PDEs</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>6.3 Multigrid method for linear integral equations</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>6.4 Algebraic multigrid methods</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>6.5 Multilevel domain decomposition preconditioners for GMRES</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>6.6 Discussion of software and the supplied Mfiles</td>
<td>286</td>
<td></td>
</tr>
</tbody>
</table>
Contents

7 **Multilevel recursive Schur complements**
 preconditioners [T4] 289
7.1 Multilevel functional partition: AMLI approximated Schur 290
7.2 Multilevel geometrical partition: exact Schur 295
7.3 Multilevel algebraic partition: permutation-based Schur 300
7.4 Appendix: the FEM hierarchical basis 305
7.5 Discussion of software and the supplied Mfiles 309

8 **Sparse wavelet preconditioners** [T5]: approximation
 of $\tilde{A}_{n \times n}$ and $\tilde{A}_{n \times n}^{-1}$ 310
8.1 Introduction to multiresolution and orthogonal wavelets 311
8.2 Operator compression by wavelets and sparsity patterns 320
8.3 Band WSPAI preconditioner 323
8.4 New centering WSPAI preconditioner 325
8.5 Optimal implementations and wavelet quadratures 335
8.6 Numerical results 336
8.7 Discussion of software and the supplied Mfiles 338

9 **Wavelet Schur preconditioners** [T6] 340
9.1 Introduction 341
9.2 Wavelets telescopic splitting of an operator 342
9.3 An exact Schur preconditioner with level-by-level wavelets 346
9.4 An approximate preconditioner with level-by-level wavelets 352
9.5 Some analysis and numerical experiments 357
9.6 Discussion of the accompanied Mfiles 363

10 **Implicit wavelet preconditioners** [T7] 364
10.1 Introduction 365
10.2 Wavelet-based sparse approximate inverse 368
10.3 An implicit wavelet sparse approximate inverse
 preconditioner 369
10.4 Implementation details 371
10.5 Dense problems 374
10.6 Some theoretical results 376
10.7 Combination with a level-one preconditioner 379
10.8 Numerical results 380
10.9 Discussion of the supplied Mfile 381

11 **Application I: acoustic scattering modelling** 383
11.1 The boundary integral equations for the Helmholtz equation in
 \mathbb{R}^3 and iterative solution 384
11.2 The low wavenumber case of a Helmholtz equation 397
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>The high wavenumber case of a Helmholtz equation</td>
<td>398</td>
</tr>
<tr>
<td>11.4</td>
<td>Discussion of software</td>
<td>399</td>
</tr>
<tr>
<td>12</td>
<td>Application II: coupled matrix problems</td>
<td>400</td>
</tr>
<tr>
<td>12.1</td>
<td>Generalized saddle point problems</td>
<td>401</td>
</tr>
<tr>
<td>12.2</td>
<td>The Oseen and Stokes saddle point problems</td>
<td>403</td>
</tr>
<tr>
<td>12.3</td>
<td>The mixed finite element method</td>
<td>405</td>
</tr>
<tr>
<td>12.4</td>
<td>Coupled systems from fluid structure interaction</td>
<td>407</td>
</tr>
<tr>
<td>12.5</td>
<td>Elasto-hydrodynamic lubrication modelling</td>
<td>410</td>
</tr>
<tr>
<td>12.6</td>
<td>Discussion of software and a supplied Mfile</td>
<td>413</td>
</tr>
<tr>
<td>13</td>
<td>Application III: image restoration and inverse problems</td>
<td>415</td>
</tr>
<tr>
<td>13.1</td>
<td>Image restoration models and discretizations</td>
<td>416</td>
</tr>
<tr>
<td>13.2</td>
<td>Fixed point iteration method</td>
<td>429</td>
</tr>
<tr>
<td>13.3</td>
<td>Explicit time marching schemes</td>
<td>436</td>
</tr>
<tr>
<td>13.4</td>
<td>The Primal-dual method</td>
<td>436</td>
</tr>
<tr>
<td>13.5</td>
<td>Nonlinear multigrids for optimization</td>
<td>439</td>
</tr>
<tr>
<td>13.6</td>
<td>The level set method and other image problems</td>
<td>442</td>
</tr>
<tr>
<td>13.7</td>
<td>Numerical experiments</td>
<td>446</td>
</tr>
<tr>
<td>13.8</td>
<td>Guide to software and the supplied Mfiles</td>
<td>447</td>
</tr>
<tr>
<td>14</td>
<td>Application IV: voltage stability in electrical power systems</td>
<td>449</td>
</tr>
<tr>
<td>14.1</td>
<td>The model equations</td>
<td>450</td>
</tr>
<tr>
<td>14.2</td>
<td>Fold bifurcation and arc-length continuation</td>
<td>454</td>
</tr>
<tr>
<td>14.3</td>
<td>Hopf bifurcation and solutions</td>
<td>458</td>
</tr>
<tr>
<td>14.4</td>
<td>Preconditioning issues</td>
<td>473</td>
</tr>
<tr>
<td>14.5</td>
<td>Discussion of software and the supplied Mfiles</td>
<td>473</td>
</tr>
<tr>
<td>15</td>
<td>Parallel computing by examples</td>
<td>475</td>
</tr>
<tr>
<td>15.1</td>
<td>A brief introduction to parallel computing and MPI</td>
<td>476</td>
</tr>
<tr>
<td>15.2</td>
<td>Some commonly used MPI routines</td>
<td>478</td>
</tr>
<tr>
<td>15.3</td>
<td>Example 1 of a parallel series summation</td>
<td>481</td>
</tr>
<tr>
<td>15.4</td>
<td>Example 2 of a parallel power method</td>
<td>483</td>
</tr>
<tr>
<td>15.5</td>
<td>Example 3 of a parallel direct method</td>
<td>489</td>
</tr>
<tr>
<td>15.6</td>
<td>Discussion of software and the supplied MPI Fortran files</td>
<td>502</td>
</tr>
<tr>
<td>Appendix A: a brief guide to linear algebra</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>Linear independence</td>
<td>504</td>
</tr>
<tr>
<td>A.2</td>
<td>Range and null spaces</td>
<td>505</td>
</tr>
<tr>
<td>A.3</td>
<td>Orthogonal vectors and matrices</td>
<td>505</td>
</tr>
<tr>
<td>A.4</td>
<td>Eigenvalues, symmetric matrices and diagonalization</td>
<td>505</td>
</tr>
<tr>
<td>A.5</td>
<td>Determinants and Cramer's rule</td>
<td>506</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>A.6 The Jordan decomposition</td>
<td>507</td>
<td></td>
</tr>
<tr>
<td>A.7 The Schur and related decompositions</td>
<td>509</td>
<td></td>
</tr>
<tr>
<td>Appendix B: the Harwell–Boeing (HB) data format</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>Appendix C: a brief guide to MATLAB®</td>
<td>513</td>
<td></td>
</tr>
<tr>
<td>C.1 Vectors and matrices</td>
<td>513</td>
<td></td>
</tr>
<tr>
<td>C.2 Visualization of functions</td>
<td>514</td>
<td></td>
</tr>
<tr>
<td>C.3 Visualization of sparse matrices</td>
<td>516</td>
<td></td>
</tr>
<tr>
<td>C.4 The functional Mfile and string evaluations</td>
<td>517</td>
<td></td>
</tr>
<tr>
<td>C.5 Interfacing MATLAB® with Fortran or C</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td>C.6 Debugging a Mfile</td>
<td>521</td>
<td></td>
</tr>
<tr>
<td>C.7 Running a MATLAB® script as a batch job</td>
<td>521</td>
<td></td>
</tr>
<tr>
<td>C.8 Symbolic computing</td>
<td>521</td>
<td></td>
</tr>
<tr>
<td>Appendix D: list of supplied M-files and programs</td>
<td>523</td>
<td></td>
</tr>
<tr>
<td>Appendix E: list of selected scientific resources on Internet</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>E.1 Freely available software and data</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>E.2 Other software sources</td>
<td>527</td>
<td></td>
</tr>
<tr>
<td>E.3 Useful software associated with books</td>
<td>527</td>
<td></td>
</tr>
<tr>
<td>E.4 Specialized subjects, sites and interest groups</td>
<td>528</td>
<td></td>
</tr>
</tbody>
</table>

References | 530 |
Author Index | 556 |
Subject Index | 564 |