

Translations of
**MATHEMATICAL
MONOGRAPH**

Volume 201

© 2008 AGI-Information Management Consultants
May be used for personal purposes only or by
libraries associated to dandelon.com network.

**Geometry of
Differential Forms**

Shigeyuki Morita

Translated by

Teruko Nagase
Katsumi Nomizu

American Mathematical Society
Providence, Rhode Island

Contents

Preface	xiii
Preface to the English Edition	xvii
Outline and Goal of the Theory	xix
Chapter 1 Manifolds	1
1.1 What is a manifold?	2
(a) The n -dimensional numerical space \mathbb{R}^n	2
(b) Topology of \mathbb{R}^n	3
(c) C^∞ functions and diffeomorphisms	4
(d) Tangent vectors and tangent spaces of \mathbb{R}^n	6
(e) Necessity of an abstract definition	10
1.2 Definition and examples of manifolds	11
(a) Local coordinates and topological manifolds	11
(b) Definition of differentiable manifolds	13
(c) \mathbb{R}^n and general surfaces in it	16
(d) Submanifolds	19
(e) Projective spaces	21
(f) Lie groups	22
1.3 Tangent vectors and tangent spaces	23
(a) C^∞ functions and C^∞ mappings on manifolds	23
(b) Practical construction of C^∞ functions on a manifold	25
(c) Partition of unity	27
(d) Tangent vectors	29
(e) The differential of maps	33
(f) Immersions and embeddings	34
1.4 Vector fields	36
(a) Vector fields	36
(b) The bracket of vector fields	38

(c) Integral curves of vector fields and one-parameter group of local transformations	39
(d) Transformations of vector fields by diffeomorphism	44
1.5 Fundamental facts concerning manifolds	44
(a) Manifolds with boundary	44
(b) Orientation of a manifold	46
(c) Group actions	49
(d) Fundamental groups and covering manifolds	51
Summary	54
Exercises	55
Chapter 2 Differential Forms	57
2.1 Definition of differential forms	57
(a) Differential forms on \mathbb{R}^n	57
(b) Differential forms on a general manifold	61
(c) The exterior algebra	61
(d) Various definitions of differential forms	66
2.2 Various operations on differential forms	69
(a) Exterior product	69
(b) Exterior differentiation	70
(c) Pullback by a map	72
(d) Interior product and Lie derivative	72
(e) The Cartan formula and properties of Lie derivatives	73
(f) Lie derivative and one-parameter group of local transformations	77
2.3 Frobenius theorem	80
(a) Frobenius theorem — Representation by vector fields	80
(b) Commutative vector fields	82
(c) Proof of the Frobenius theorem	83
(d) The Frobenius theorem — Representation by differential forms	86
2.4 A few facts	89
(a) Differential forms with values in a vector space	89
(b) The Maurer-Cartan form of a Lie group	90
Summary	92
Exercises	93
Chapter 3 The de Rham Theorem	95
3.1 Homology of manifolds	96

(a) Homology of simplicial complexes	96
(b) Singular homology	99
(c) C^∞ triangulation of C^∞ manifolds	100
(d) C^∞ singular chain complexes of C^∞ manifolds	103
3.2 Integral of differential forms and the Stokes theorem	104
(a) Integral of n -forms on n -dimensional manifolds	104
(b) The Stokes theorem (in the case of manifolds)	107
(c) Integral of differential forms on chains, and the Stokes theorem	109
3.3 The de Rham theorem	111
(a) de Rham cohomology	111
(b) The de Rham theorem	113
(c) Poincaré lemma	116
3.4 Proof of the de Rham theorem	119
(a) Čech cohomology	119
(b) Comparison of de Rham cohomology and Čech cohomology	121
(c) Proof of the de Rham theorem	126
(d) The de Rham theorem and product structure	131
3.5 Applications of the de Rham theorem	133
(a) Hopf invariant	133
(b) The Massey product	136
(c) Cohomology of compact Lie groups	137
(d) Mapping degree	138
(e) Integral expression of the linking number by Gauss	140
Summary	142
Exercises	142
Chapter 4 Laplacian and Harmonic Forms	145
4.1 Differential forms on Riemannian manifolds	145
(a) Riemannian metric	145
(b) Riemannian metric and differential forms	148
(c) The $*$ -operator of Hodge	150
4.2 Laplacian and harmonic forms	153
4.3 The Hodge theorem	158
(a) The Hodge theorem and the Hodge decomposition of differential forms	158
(b) The idea for the proof of the Hodge decomposition	160
4.4 Applications of the Hodge theorem	162

(a) The Poincaré duality theorem	162
(b) Manifolds and Euler number	164
(c) Intersection number	165
Summary	166
Exercises	167
Chapter 5 Vector Bundles and Characteristic Classes	169
5.1 Vector bundles	169
(a) The tangent bundle of a manifold	169
(b) Vector bundles	170
(c) Several constructions of vector bundles	173
5.2 Geodesics and parallel translation of vectors	180
(a) Geodesics	180
(b) Covariant derivative	181
(c) Parallel displacement of vectors and curvature	183
5.3 Connections in vector bundles and	185
(a) Connections	185
(b) Curvature	186
(c) Connection form and curvature form	188
(d) Transformation rules of the local expressions for a connection and its curvature	190
(e) Differential forms with values in a vector bundle	191
5.4 Pontrjagin classes	193
(a) Invariant polynomials	193
(b) Definition of Pontrjagin classes	197
(c) Levi-Civita connection	201
5.5 Chern classes	204
(a) Connection and curvature in a complex vector bun- dle	204
(b) Definition of Chern classes	205
(c) Whitney formula	207
(d) Relations between Pontrjagin and Chern classes	208
5.6 Euler classes	211
(a) Orientation of vector bundles	211
(b) The definition of the Euler class	211
(c) Properties of the Euler class	214
5.7 Applications of characteristic classes	216
(a) The Gauss-Bonnet theorem	216
(b) Characteristic classes of the complex projective space	223

(c) Characteristic numbers	225
Summary	228
Exercises	229
Chapter 6 Fiber Bundles and Characteristic Classes	231
6.1 Fiber bundle and principal bundle	231
(a) Fiber bundle	231
(b) Structure group	233
(c) Principal bundle	236
(d) The classification of fiber bundles and characteristic classes	238
(e) Examples of fiber bundles	239
6.2 S^1 bundles and Euler classes	240
(a) S^1 bundle	241
(b) Euler class of an S^1 bundle	241
(c) The classification of S^1 bundles	246
(d) Defining the Euler class for an S^1 bundle by using differential forms	249
(e) The primary obstruction class and the Euler class of the sphere bundle	254
(f) Vector fields on a manifold and Hopf index theorem	255
6.3 Connections	257
(a) Connections in general fiber bundles	257
(b) Connections in principal bundles	260
(c) Differential form representation of a connection in a principal bundle	262
6.4 Curvature	265
(a) Curvature form	265
(b) Weil algebra	268
(c) Exterior differentiation of the Weil algebra	270
6.5 Characteristic classes	275
(a) Weil homomorphism	275
(b) Invariant polynomials for Lie groups	279
(c) Connections for vector bundles and principal bundles	282
(d) Characteristic classes	284
6.6 A couple of items	285
(a) Triviality of the cohomology of the Weil algebra	285
(b) Chern-Simons forms	287

(c) Flat bundles and holonomy homomorphisms	287
Summary	291
Exercises	292
Perspectives	295
Answers to Exercises	299
Chapter 1	299
Chapter 2	302
Chapter 3	305
Chapter 4	308
Chapter 5	310
Chapter 6	311
References	315
Index	317