

SUBMODULAR FUNCTIONS AND ELECTRICAL NETWORKS

H. Narayanan Department of Electrical Engineering Indian Institute of Technology at Bombay Bombay, India

Contents

~

1 Introduction						
2	Mat	Mathematical Preliminaries				
	2.1	Sets	15			
	2.2	Vectors and Matrices	16			
	2.3	Linear Inequality Systems	24			
		2.3.1 The Kuhn-Fourier Theorem	24			
		2.3.2 Linear Programming	27			
	2.4	Solutions of Exercises	29			
	2.5	Solutions of Problems	29			
9	0		91			
3	Gra	pns	31			
	3.1	Introduction	31			
	3.2	Graphs: Basic Notions	31			
		3.2.1 Graphs and Subgraphs	31			
		3.2.2 Connectedness	33			
		3.2.3 Circuits and Cutsets	34			
		3.2.4 Trees and Forests	36			
		3.2.5 Strongly Directedness	38			
		3.2.6 Fundamental Circuits and Cutsets	38			
		3.2.7 Orientation	39			
		3.2.8 Isomorphism	40			
		3.2.9 Cyclically connectedness	41			
	3.3	Graphs and Vector Spaces	42			
		3.3.1 The Circuit and Crossing Edge Vectors	44			

	3.3.2	Voltage and Current Vectors		4 5
	3.3.3	Voltage and Current Vector Spaces and Tellegen's Theorem	•	46
	3.3.4	Fundamental cutset matrix of a forest f		47
	3.3.5	Fundamental circuit matrix of a forest f	•	48
3.4	Basic (Operations on Graphs and Vector Spaces		50
	3.4.1	Restriction and Contraction of Graphs	•	50
	3.4.2	Restriction and Contraction of Vector Spaces	•	53
	3.4.3	Vector Space Duality	•	54
	3.4.4	Relation between Graph Minors and Vector Space Minors $% \mathcal{A}$.	•	55
	3.4.5	Representative Matrices of Minors	•	56
	3.4.6	Minty's Theorem	•	59
3.5	Proble	ms	•	6 0
3.6	Graph	Algorithms	•	64
	3.6.1	Breadth First Search		66
	3.6.2	Depth First Search	•	67
	3.6.3	Minimum Spanning Tree	•	69
	3.6.4	Shortest Paths from a Single Vertex	•	70
	3.6.5	Restrictions and Contractions of Graphs	•	71
	3.6.6	Hypergraphs represented by Bipartite Graphs	•	71
	3.6.7	Preorders and Partial Orders	•	.72
	3.6.8	Partitions		73
	3.6.9	The Max-Flow Problem		74
	3.6.10	Flow Graphs Associated with Bipartite Graphs		79
3.7	Duality	y	•	82
3.8	Notes		•	86
3.9	Solutio	ons of Exercises	•	86
3.10	Solutio	ons of Problems	•	97
N /[4			-1	0.0
1vrau	Introdu	untion .		109
4.1	Avion	Systems for Matroida	•	103
7.2	A 9 1	Independence and Rece Arisme	•	100 109
	4.2.1	Pank Axiome	•	103 105
	4.2.2	Circuit Avions	•	107
	1.4.0		•	101

4

		4.2.4 Closure Axioms
	4.3	Dual of a Matroid
	4.4	Minors of Matroids
	4.5	Connectedness in Matroids
		4.5.1 Duality for Matroids
	4.6	Matroids and the Greedy Algorithm
	4.7	Notes
	4.8	Solutions of Exercises
5	Elec	trical Networks 131
	5.1	Introduction
	5.2	In Terms of Multiterminal Devices
	5.3	In Terms of 2-Terminal Devices
	5.4	Standard Devices
	5.5	Common Methods of Analysis
		5.5.1 Nodal Analysis
		5.5.2 Loop Analysis
		5.5.3 Modified Nodal Analysis
		5.5.4 Sparse Tableau Approach
	5.6	Procedures used in Circuit Simulators
		5.6.1 Example to Illustrate Working of Circuit Simulators 15
		5.6.2 Working of General Purpose Circuit Simulators 152
	5.7	State Equations for Dynamic Networks
	5.8	Multiports in Electrical Networks
		5.8.1 An informal Description of Multiport Decomposition 16
		5.8.2 Thevenin-Norton Theorem
	5.9	Some Elementary Results of Network Theory
	5.10	Notes
	5.11	Solutions of Exercises
6	Тор	ological Hybrid Analysis 173
	6.1	Introduction
	6.2	Electrical Network: A Formal Description
		6.2.1 Static and Dynamic Electrical Networks

		6.2.2	Device Decoupling	175
	6.3	Some 1	Basic Topological Results	177
		6.3.1	Effect of Voltage Unconstrained and Current Unconstrained Devices on the Topological Constraints	177
		6.3.2	Voltage and Current shift	179
	6.4	A The	orem on Topological Hybrid Analysis	185
		6.4.1	The Networks \mathcal{N}_{AL} and \mathcal{N}_{BK}	186
	6.5	Struct	ure of Constraints and Optimization	19 0
		6.5.1	Essential Structure of the Constraints	1 9 0
		6.5.2	Selection of Minimal L and K \hdots	191
		6.5.3	Solution of Linear Networks by Topological Hybrid Analysis .	195
		6.5.4	Decomposition procedure for $\mathcal{N}_{AL}, \mathcal{N}_{BK}$	198
		6.5.5	Hybrid Analysis Equations for Linear Networks	199
		6.5.6	The Hybrid Rank	203
	6.6	Notes		205
	6.7	Solutio	ons of Exercises	205
7	The	Impli	cit Duality Theorem and Its Applications	213
7	The 7.1	Impli The V	cit Duality Theorem and Its Applications ector Space Version	213 213
7	The 7.1	• Impli The V 7.1.1	cit Duality Theorem and Its Applications Tector Space Version	213 213 215
7	The 7.1	• Impli The V 7.1.1 7.1.2	cit Duality Theorem and Its Applications Tector Space Version	213 213 215 217
7	The 7.1 7.2	• Impli The V 7.1.1 7.1.2 *Quas	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums ii Orthogonality	 213 213 215 217 219
7	The 7.1 7.2 7.3	The V 7.1.1 7.1.2 *Quas Applic	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums	 213 213 215 217 219 222
7	The 7.1 7.2 7.3	 Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 	cit Duality Theorem and Its Applications ector Space Version	 213 213 215 217 219 222 222
7	The 7.1 7.2 7.3	 Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 	cit Duality Theorem and Its Applications ector Space Version	 213 213 215 217 219 222 222 223
7	The 7.1 7.2 7.3	 Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 7.3.3 	cit Duality Theorem and Its Applications rector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums Matched and Skewed Sums Model of the Implicit Duality Theorem Mations of the Implicit Duality Theorem Ideal Transformer Connections Multiport Decomposition Topological Transformation Of Electrical Networks	 213 213 215 217 219 222 222 223 225
7	The 7.1 7.2 7.3	 Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 7.3.3 7.3.4 	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums ii Orthogonality ii Orthogonality rations of the Implicit Duality Theorem Ideal Transformer Connections Multiport Decomposition Topological Transformation Of Electrical Networks The Adjoint of a Linear System	213 213 215 217 219 222 222 223 225 228
7	The 7.1 7.2 7.3	Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums Matched and Skewed Sums Model and Skewed Sums Matched and Skewed Sums Multiport Decomposition Multiport Decomposition Topological Transformation Of Electrical Networks The Adjoint of a Linear System Rank, Nullity and the Hybrid rank	213 213 215 217 219 222 222 223 225 228 232
7	The 7.1 7.2 7.3	 Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 *Linea 	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums i Orthogonality ii Orthogonality rations of the Implicit Duality Theorem Ideal Transformer Connections Multiport Decomposition Topological Transformation Of Electrical Networks The Adjoint of a Linear System Rank, Nullity and the Hybrid rank ar Inequality Systems	213 213 215 217 219 222 222 223 225 228 232 233
7	The 7.1 7.2 7.3	Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 *Linea 7.4.1	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums i Orthogonality i Orthogonality rations of the Implicit Duality Theorem Ideal Transformer Connections Multiport Decomposition Topological Transformation Of Electrical Networks The Adjoint of a Linear System Rank, Nullity and the Hybrid rank Applications of the Polar Form	213 213 215 217 219 222 223 225 228 232 233 237
7	The 7.1 7.2 7.3 7.4 7.5	Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 *Linea 7.4.1 *Integ	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums i Orthogonality ii Orthogonality cations of the Implicit Duality Theorem Ideal Transformer Connections Multiport Decomposition Topological Transformation Of Electrical Networks The Adjoint of a Linear System Rank, Nullity and the Hybrid rank ar Inequality Systems Applications of the Polar Form	213 213 215 217 219 222 223 225 228 232 233 237 238
7	The 7.1 7.2 7.3 7.3 7.4 7.5 7.6	 Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 *Linea 7.4.1 *Integ Proble 	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums i Orthogonality i Orthogonality rations of the Implicit Duality Theorem Ideal Transformer Connections Multiport Decomposition Topological Transformation Of Electrical Networks The Adjoint of a Linear System Rank, Nullity and the Hybrid rank Applications of the Polar Form rality Systems ems	213 213 215 217 219 222 223 225 228 233 237 238 237 238 243
7	The 7.1 7.2 7.3 7.4 7.4 7.5 7.6 7.7	 Impli The V 7.1.1 7.1.2 *Quas Applic 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 *Linea 7.4.1 *Integ Proble Notes 	cit Duality Theorem and Its Applications ector Space Version The Implicit Duality Theorem: Orthogonality Case Matched and Skewed Sums Multiportal Systems The Adjoint of a Linear System Applications of the Polar Form Applications of the Polar Form Praity Systems Parality Systems Parality Systems	213 213 215 217 219 222 223 225 228 233 237 238 243 243

	7.9	Solutions of Problems	57	
8	Mul	ultiport Decomposition		
	8.1	Introduction	69	
	8.2	Multiport Decomposition of Vector Spaces	69	
	8.3	Analysis through Multiport Decomposition	77	
		8.3.1 Rewriting Network Constraints in the Multiport Form 2	77	
		8.3.2 An Intuitive Procedure for Solution through Multiports 2	78	
	8.4	Port Minimization	82	
		8.4.1 An Algorithm for Port Minimization	82	
		8.4.2 Characterization of Minimal Decomposition	87	
		8.4.3 Complexity of Algorithm (Port minimization 1) for Graphic Spaces and Sparsity of the Output Matrices	92	
		8.4.4 *Minimal Decomposition of Graphic Vector Spaces to make Component Spaces Graphic	93	
	8.5	*Multiport Decomposition for Network Reduction	97	
	8.6	Problems	02	
	8.7	Solutions of Exercises	05	
	8.8	Solutions of Problems	16	
9	Sub	modular Functions 33	25	
	9.1	Introduction	25	
	9.2	Submodularity	26	
	9.3	Basic Operations on Semimodular Functions	29	
	9.4	*Other Operations on Semimodular Functions	35	
	9.5	Polymatroid and Matroid Rank Functions	39	
	9.6	Connectedness for Semimodular Functions	44	
	9.7	*Semimodular Polyhedra	46	
	9.8	Symmetric Submodular Functions	53	
	9.9	Problems	58	
	9.10	Notes	62	
	9.11	Solutions of Exercises	62	
	9.12	Solutions of Problems	69	

10 Convolution of Submodular Functions

	10.1	Introduction				
	10.2	2 Convolution				
		10.2.1	Formal Properties			
		10.2.2	Examples			
		10.2.3	Polyhedral interpretation for convolution			
	10.3	Matroi	ds, Polymatroids and Convolution			
	10.4	The Pr	rincipal Partition			
		10.4.1	Introduction			
		10.4.2	Basic Properties of PP			
		10.4.3	Symmetry Properties of the Principal Partition of a Submod- ular Function			
		10.4.4	Principal Partition from the Point of View of Density of Sets 394			
		10.4.5	Principal Partition of $f^*(\cdot)$ and $f * g(\cdot) \ldots \ldots \ldots 396$			
		10.4.6	The Principal Partition associated with Special Minors 401			
10.5 *The Refined Partial Order of the Principal Partition			Refined Partial Order of the Principal Partition			
	10.6 Algorithms for PP					
		10.6.1	Basic Algorithms			
		10.6.2	*Building the refined partial order given (Π_{pp}, \geq_{π}) 417			
		10.6.3	Algorithm $Convolve_S(w_R(\Gamma_L), w_L)$			
		10.6.4	Example: PP of $(\Gamma_L (\cdot), w_L(\cdot))$			
	10.7	*Align	ed Polymatroid Rank Functions			
	10.8	Notes				
	10.9	Solutio	ons of Exercises			
10.10Solutions of Problems						
11	Mat	roid U	nion 453			
	11.1	Introdu	uction			
	11.2	Submo	odular Functions induced through a Bipartite Graph \ldots 453			
	11.3	Matroi	id Union: Algorithm and Structure			
		11.3.1	Introduction			
		11.3.2	The Algorithm			
		11.3.3	Justification and complexity of Algorithm Matroid Union 462			
		11.3.4	Structure of the Matroid Union			
	11.4	PP of	the Rank Function of a Matroid			

		11.4.1	Constructing $\mathcal{B}_{\lambda_{r, \cdot }}$	470
		11.4.2	Complexity of constructing $\mathcal{B}_{\lambda_{r, \cdot }}$	471
		11.4.3	Example	473
	11.5	Notes		476
	11.6	Solutio	ns of Exercises	477
12	Dilw	vorth]	Fruncation of Submodular Functions	481
	12.1	Introdu	uction	481
	12.2	Dilwor	th Truncation	4 82
	1	12.2.1	Formal Properties	482
		12.2.2	Examples	487
	12.3	The Pr	rincipal Lattice of Partitions	489
		12.3.1	Basic Properties of the PLP	489
		12.3.2	PLP from the Point of View of Cost of Partitioning	497
	12.4	*Appro Proble	eximation Algorithms through PLP for the Min Cost Partition	502
	12.5	The Pl	LP of Duals and Truncations	507
		12.5.1	The PLP of Duals	507
		12.5.2	The PLP of the Truncation	509
		12.5.3	The Cotruncation Operation and the Principal Lattice of Co-	
		*	partitions	512
	12.6	*The F	Principal Lattice of Partitions associated with Special Fusions .	513
	12.7	Buildir	ng Submodular Functions with desired PLP	516
	12.8	Notes		519
	12.9	Solutio	ons of Exercises	520
	12.1(Solutio	ons of Problems	531
13	Alg	orithm	ns for the PLP of a Submodular Function	533
	13.1	Introdu	uction	533
	13.2	Minim	izing the Partition Associate of a Submodular function \ldots .	534
		13.2.1	Find (Strong) Fusion Set	535
		13.2.2	$\operatorname{Min}(ar{f},S)$	537
	13.3	Constr	uction of the P-sequence of Partitions	539
	13.4	Constr	uction of the DTL	542
	13.5	Compl	exity of construction of the PLP	544

	13.6	Constr	uction of the PLP of the dual	545
	13.7	PLP A	lgorithms for $(w_R\Gamma)(\cdot)$ and $-(w_RE_L)(\cdot)$	545
		13.7.1	PLP of $(w_R\Gamma)(\cdot)$	546
		13.7.2	PLP of $(-w_R E_L)(\cdot)$	550
	13.8	Structu	ral Changes in Minimizing Partitions	555
	13.9	Relatio	on between PP and PLP	559
	13.10)Fast A	lgorithms for Principal Partition of the rank function of a graph	564
	13.11	Solutio	ns of Exercises	566
14	The	Hybri	d Rank Problem	571
	14.1	Introdu	uction	571
	14.2	The H	ybrid Rank Problem - First Formulation	571
	14.3	The H	ybrid Rank Problem - Second Formulation	576
		14.3.1	Introduction	576
		14.3.2	Membership Problem with Matroid Expansion $\ldots \ldots \ldots$	576
		14.3.3	Membership Problem with Graphic Matroid Expansion	582
		14.3.4	PLP of the rank function of a matroid \ldots \ldots \ldots	587
	14.4	The H	ybrid Rank Problem - Third Formulation	588
		14.4.1	Introduction	588
		14.4.2	Fusions and Fissions	59 0
.~		14.4.3	Relation between the Hybrid Rank of a Graph and its Hybrid Rank relative to a Partition	595
	14.5	The H	ybrid Rank Problem - Fourth Formulation	598
		14.5.1	Introduction	598
		14.5.2	Generalized Fusions and Fissions	6 00
		14.5.3	Port Decomposition and Generalized Hybrid Rank \ldots .	602
		14.5.4	Relation between the Hybrid Rank of a Representative Ma- trix of a Vector Space and its Generalized Hybrid Rank rel-	605
		1455	Negting Bronenty of Ontimel Subsystem	000 611
	14.0	14.5.5	Nesting Property of Optimal Subspaces	011 614
	14.0	Solutio	ons of Exercises	014

ł