CONTENTS

<table>
<thead>
<tr>
<th>Preface to the Second Edition</th>
<th>xix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface to the First Edition</td>
<td>xxi</td>
</tr>
<tr>
<td>Possible Course Outlines</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

Chapter 1 Uses and Characteristics of Separation Processes 1

An Example: Cane Sugar Refining 2
Another Example: Manufacture of p-Xylene 9
Importance and Variety of Separations 15
Economic Significance of Separation Processes 16
Characteristics of Separation Processes 17
Separating Agent 17
Categorizations of Separation Processes 18
Separation Factor 29
Inherent Separation Factors: Equilibration Processes 30
Vapor-Liquid Systems 30
Binary Systems 32
Liquid-Liquid Systems 34
Liquid-Solid Systems 38
Systems with Infinite Separation Factor 40
Sources of Equilibrium Data 41
Inherent Separation Factors: Rate-governed Processes 42
Gaseous Diffusion 42
Reverse Osmosis 45

Chapter 2 Simple Equilibrium Processes 59

Equilibrium Calculations 59
Binary Vapor-Liquid Systems 60
Ternary Liquid Systems 60
Multicomponent Systems 61
Checking Phase Conditions for a Mixture 68
Chapter 6 Binary Multistage Separations: General Graphical Approach

- Straight Operating Lines
 - Constant Total Flows
 - Constant Inert Flows
 - Accounting for Unequal Latent Heats in Distillation; MLHV Method
- Curved Operating Lines
 - Enthalpy Balance: Distillation
 - Algebraic Enthalpy Balance
 - Graphical Enthalpy Balance
 - Miscibility Relationships: Extraction
 - Independent Specifications: Separating Agent Added to Each Stage
 - Cross Flow Processes
 - Processes without Discrete Stages
 - General Properties of the \(y/x \) Diagram

Chapter 7 Patterns of Change

- Binary Multistage Separations
 - Unidirectional Mass Transfer
 - Constant Relative Volatility
 - Enthalpy-Balance Restrictions
 - Distillation
 - Absorption and Stripping
 - Contrast between Distillation and Absorber-Strippers
 - Phase-Miscibility Restrictions; Extraction
- Multicomponent Multistage Separations
 - Absorption
 - Distillation
 - Key and Nonkey Components
 - Equivalent Binary Analysis
 - Minimum Reflux
 - Extraction
 - Extractive and Azeotropic Distillation

Chapter 8 Group Methods

- Linear Stage-Exit Relationships and Constant Flow Rates
- Countercurrent Separations
 - Minimum Flows and Selection of Actual Flows
 - Limiting Components
 - Using the KSB Equations
 - Multiple-Section Cascades
- Chromatographic Separations
 - Intermittent Carrier Flow
 - Continuous Carrier Flow
 - Peak Resolution
- Nonlinear Stage-Exit Relationships and Varying Flow Rates
 - Binary Countercurrent Separations: Discrete Stages
Constant Separation Factor and Constant Flow Rates 393
Binary Countercurrent Separations: Discrete Stages 393
Selection of Average Values of α 397
Multicomponent Countercurrent Separations: Discrete Stages 398
Solving for ϕ and ϕ' 403

Chapter 9 Limiting Flows and Stage Requirements; Empirical Correlations 414
Minimum Flows 414
All Components Distributing 415
General Case 417
Single Section 418
Two Sections 418
Multiple Sections 423
Minimum Stage Requirements 424
Energy Separating Agent vs. Mass Separating Agent 424
Binary Separations 425
Multicomponent Separations 427
Empirical Correlations for Actual Design and Operating Conditions 428
Stages vs. Reflux 428
Distribution of Nonkey Components 433
Geddes Fractionation Index 433
Effect of Reflux Ratio 434
Distillation of Mixtures with Many Components 436
Methods of Computation 440

Chapter 10 Exact Methods for Computing Multicomponent Multistage Separations 446
Underlying Equations 446
General Strategy and Classes of Problems 448
Stage-to-Stage Methods 449
Multicomponent Distillation 450
Extractive and Azeotropic Distillation 455
Absorption and Stripping 455
Tridiagonal Matrices 466
Distillation with Constant Molal Overflow; Operating Problem 472
Persistence of a Temperature Profile That Is Too High or Too Low 473
Accelerating the Bubble-Point Step 474
Allowing for the Effects of Changes on Adjacent Stages 474
More General Successive-Approximation Methods 479
Nonideal Solutions; Simultaneous-Convergence Method 480
Ideal or Mildly Nonideal Solutions; $2N$ Newton Method 481
Pairing Convergence Variables and Check Functions 483
BP Arrangement 483
Temperature Loop 484
Total-Flow Loop 485
SR Arrangement 485
Total-Flow Loop 487
Temperature Loop 488
Relaxation Methods 489
Comparison of Convergence Characteristics; Combinations of Methods 490
Design Problems 491
 Optimal Feed-Stage Location 494
Initial Values 496
Applications to Specific Separation Processes 497
 Distillation 497
 Absorption and Stripping 498
 Extraction 499
Process Dynamics; Batch Distillation 501
Review of General Strategy 501
Available Computer Programs 503

Chapter 11 Mass-Transfer Rates 508
Mechanisms of Mass Transport 509
Molecular Diffusion 509
 Prediction of Diffusivities 511
 Gases 511
 Liquids 513
 Solids 514
Solutions of the Diffusion Equation 515
Mass-Transfer Coefficients 518
 Dilute Solutions 518
 Film Model 519
 Penetration and Surface-Renewal Models 520
 Diffusion into a Stagnant Medium from the Surface of a Sphere 523
 Dimensionless Groups 524
 Laminar Flow near Fixed Surfaces 525
 Turbulent Mass Transfer to Surfaces 526
 Packed Beds of Solids 527
 Simultaneous Chemical Reaction 528
Interfacial Area 528
 Effects of High Flux and High Solute Concentration 528
 Reverse Osmosis 533
Interphase Mass Transfer 536
 Transient Diffusion 540
 Combining the Mass-Transfer Coefficient with the Interfacial Area 542
Simultaneous Heat and Mass Transfer 545
 Evaporation of an Isolated Mass of Liquid 546
Drying 550
 Rate-limiting Factors 550
 Drying Rates 552
Design of Continuous Countercurrent Contactors 556
 Plug Flow of Both Streams 556
 Transfer Units 558
 Analytical Expressions 563
 Minimum Contactor Height 566
 More Complex Cases 566
Chapter 12 Capacity of Contacting Devices; Stage Efficiency

Factors Limiting Capacity
Flooding
- Packed Columns
- Plate Columns
- Liquid-Liquid Contacting
Entrainment
- Plate Columns
Pressure Drop
- Packed Columns
- Plate Columns
Residence Time for Good Efficiency
Flow Regimes; Sieve Trays
Range of Satisfactory Operation
- Plate Columns
Comparison of Performance
Factors Influencing Efficiency
Empirical Correlations
Mechanistic Models
Mass-Transfer Rates
Point Efficiency E_{OG}
Flow Configuration and Mixing Effects
- Complete Mixing of the Liquid
- No Liquid Mixing: Uniform Residence Time
- No Liquid Mixing: Distribution of Residence Times
Partial Liquid Mixing
Discussion
Entrainment
Summary of AIChE Tray-Efficiency Prediction Method
Chemical Reaction
Surface-Tension Gradients: Interfacial Area
- Page 627

Density and Surface-Tension Gradients: Mass-Transfer Coefficients
- Page 630

Surface-active Agents
- Page 633

Heat Transfer
- Page 634

Multicomponent Systems
- Page 636

Alternative Definitions of Stage Efficiency
- Criteria
- Page 637
- Murphree Liquid Efficiency
- Overall Efficiency
- Vaporization Efficiency
- Hausen Efficiency

Compromise between Efficiency and Capacity
- Page 641

Cyclically Operated Separation Processes
- Countercurrent vs. Cocurrent Operation
- A Case History

Chapter 13 Energy Requirements of Separation Processes
- Page 660

Minimum Work of Separation
- Isothermal Separations
- Nonisothermal Separations; Available Energy
- Significance of W_{min}

Net Work Consumption
- Thermodynamic Efficiency

Single-Stage Separation Processes

Multistage Separation Processes
- Potentially Reversible Processes: Close-boiling Distillation
- Partially Reversible Processes: Fractional Absorption
- Irreversible Processes: Membrane Separations

Reduction of Energy Consumption
- Energy Cost vs. Equipment Cost
- General Rules of Thumb
- Examples

Distillation
- Heat Economy
 - Cascaded Columns
 - Heat Pumps
 - Examples

Irreversibilities within the Column; Binary Distillation
- Isothermal Distillation

Multicomponent Distillation
- Alternatives for Ternary Mixtures
- Sequencing Distillation Columns
- Example: Manufacture of Ethylene and Propylene
- Sequencing Multicomponent Separations in General

Reducing Energy Consumption for Other Separation Processes
- Mass-Separating-Agent Processes
- Rate-governed Processes: The Ideal Cascade
Chapter 14 Selection of Separation Processes

Factors Influencing the Choice of a Separation Process

Feasibility

Product Value and Process Capacity

Damage to Product

Classes of Processes

Separation Factor and Molecular Properties
 Molecular Volume
 Molecular Shape
 Dipole Moment and Polarizability
 Molecular Charge
 Chemical Reaction

Chemical Complexing

Experience

Generation of Process Alternatives

Illustrative Examples

Separation of Xylene Isomers

Concentration and Dehydration of Fruit Juices

Solvent Extraction

Solvent Selection
 Physical Interactions
 Extractive Distillation
 Chemical Complexing
 An Example

Process Configuration

Selection of Equipment

Selection of Control Schemes

Appendixes

A Convergence Methods and Selection of Computation Approaches

Desirable Characteristics

Direct Substitution

First Order

Second and Higher Order

Initial Estimates and Tolerance

Multivariable Convergence

Choosing \(f(x) \)

B Analysis and Optimization of Multieffect Evaporation

Simplified Analysis

Optimum Number of Effects

More Complex Analysis

C Problem Specification for Distillation

The Description Rule

Total Condenser vs. Partial Condenser

Restrictions on Substitutions and Ranges of Variables

Other Approaches and Other Separations
CONTENTS

D Optimum Design of Distillation Processes 798
 Cost Determination 798
 Optimum Reflux Ratio 798
 Optimum Product Purities and Recovery Fractions 801
 Optimum Pressure 803
 Optimum Phase Condition of Feed 807
 Optimum Column Diameter 807
 Optimum Temperature Differences in Reboilers and Condensers 807
 Optimum Overdesign 808

E Solving Block-Tridiagonal Sets of Linear Equations: Basic Distillation Program 811
 Block-Tridiagonal Matrices 811
 Basic Distillation Program 821

F Summary of Phase-Equilibrium and Enthalpy Data 825

G Nomenclature 827

Index 835