Hans-Martin Henning (Ed.)

Solar-Assisted Air-Conditioning in Buildings

A Handbook for Planners

Second Revised Edition

5

SpringerWienNewYork

 $I\!I\!I$

		<u>u</u>	
Editor's	notes	XIII	
Authors.	contributors	XIV	
1	Introduction	1	
	PART I - COMPONENTS		
2	The load sub-system - air-conditioning equipment	7	
2.1	All-air systems	8	
2.1.1	Single-duct systems:	9	
	variable air volume (VAV) and constant air volume (CAV) system		
2.1.2	Single-duct displacement systems	10	
2.1.3	Dual-duct systems	10	
2.1.4	Multizone systems	10	
2.2	Water systems	10	
2.2.1	Fan-coils	11	
2.2.2	Chilled ceilings	12	
2.2.3	Chilled floors	13	
2.3	Air-water systems	13	
2.3.1	Induction systems	14	
2.3.2	Fan-coil systems with supplementary air	14	
2.3.3	Chilled building components with supplementary air	14	
3	The cold production sub-system	15	
3.1	Chillers	16	
3.1.1	Absorption chillers	16	
3.1.2	Adsorption chillers	19	
3.1.3	Vapour compression chillers	21	
3.2	Desiccant cooling systems	22	
3.2.1	Desiccant wheel	26	
3.2.2	Humidifiers	27	
3.2.3	Air-to-air heat exchangers	29	
3.2.4	Desiccant cooling with liquid sorbent	30	
3.3	Other components of air-conditioning systems	31	
3.3.1	Cooling towers	31	
3.3.2	Fans, pumps and accessories	33	
3.3.3	Cold storages	36	
4 Th	e heat production sub-system	39	
4.1	Solar collectors and back-up heat source	39	
4.1.1	Flat-plate collectors	42	
4.1.2	Evacuated tube collectors	44	
4.1.3	Stationary CPC-collectors	46	
4.1.4	Solar air collectors	47	

4.1.5	Summary – solar collectors	49
4.1.6	Back-up heat source	51
4.2	Storage systems	52
4.2.1	Hot water storages	53
4.2.2	Storages with phase change materials	56

PART II - SYSTEMS

...

5

5.1 Solar-assisted and solar thermally autonomous systems 59 Characterisation of solar-thermally driven cooling systems 5.2 61

System configurations: examples, control and operation

59

62 69

77

81

103

5.2.1	Solar desiccant cooling systems (SDEC)
5.2.2	Solar heat driven, chiller based systems (SHDC)

5.2.3 Combined systems

6

Design approaches

6.1	Rules of thumb	82
6.2	Comparison of solar collectors	83
6.3	Gross heat production of the collector	85
6.3.1	Meteorological data - climatic regions	86
6.3.2	Comparative results	87
6.4	Correlation between solar gains and cooling (heating) loads	89
6.4.1	Examples of loads	90
6.4.2	Selected results - solar fraction	91
6.4.3	Parametric study	94
6.5	SACE method	96
6.6	TASK 25 design tool	98
6.6.1	Method and software structure	99
6.6.2	Systems	100
6.7	Simulation programs	102

Performance figures 7

	Design examples	117
7.3	Environmental benefits	115
7.2.1	Energy-economic design study - example	111
7.2	Economic performance	109
7.1.1	Primary energy balance	106
7.1	Energy performance	103

Design examples 8

\$

8.1	The SARANTIS cosmetics factory at Inofita Viotias, Greece	117
8.1.1	Building and load	117
8.1.2	Air-conditioning concept and design of equipment	118
8.1.3	Collector and solar system design	119
8.1.4	Energy performance	120
8.1.5	Economics	120

TABLE	OF	CON	T	EN	TS

1

8.2	An office building in Guadeloupe	121
8.2.1	Building and load	121
8.2.2	Air-conditioning concept and design of equipment	122
8.2.3	Collector and solar system design	123
8.2.4	Energy performance	124
8.2.5	Economics	124
8.3	The IHK desiccant cooling system in Freiburg, Germany	125
8.3.1	Building and load	125
8.3.2	Air-conditioning concept and design of equipment	126
8.3.3	Collector and solar system design	127
8.3.4	Energy performance	129
8.3.5	Economics	129
9	Summary	131
References		133
Appendi	x 1: Example load parameters	A1
Appendix 2: Performance example parameters		A10
Appendi	x 3: The IEA Solar Heating & Cooling Programme	A11
Appendi	x 4: Task 25 Solar-Assisted Air-Conditioning of Buildings	A12

XI